• Title/Summary/Keyword: Reverse Transformation Temperature and Time

Search Result 9, Processing Time 0.019 seconds

Mechanical and Elastic Wave Properties of STS316L with Different Reverse Transformation Temperature and Time (역변태 온도 및 시간이 다른 STS316L의 기계적 및 탄성파 특성)

  • Do, Jae-Yoon;Tak, Young-Joon;Shin, Ki-Hang;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1055-1062
    • /
    • 2022
  • In this study, the mechanical properties of 80% cold-rolled austenitic 316L stainless steel were evaluated using specimens subjected to reverse transformation at 500-750℃ for 20 minutes and reverse transformation at 700℃ for 2-60 minutes. Also, for the elastic wave obtained from the tensile test, the dominant frequency according to the reverse transformation condition was investigated by time-frequency analysis. The SEM image of the 80% cold-rolled material was transformed into martensite and showed line and cross shapes. The TEM image showed that line shapes were shown at the grain, and grain boundary of martensite. The higher the heat treatment temperature and the longer time, the larger the grain. Tensile strength decreased as the heat treatment temperature and time increased, but elongation increased. Hardness was proportional to tensile strength. This is because the grain with different directions showed the same direction due to reverse transformation. The dominant frequency was decreased and then increased as the temperature and time increased. This is because the direction of the grain is different at a low temperature and the same direction is shown at a high temperature.

Effect of Reverse Transformation on the Mechanical Properties of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 역변태의 영향)

  • Kang, C.Y.;Hur, T.Y.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.413-418
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the mechanical properties in high manganese austenitic stainless steel. Over 95% of the austenite was transformed to deformation-induced martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with an increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. There was a rapid decrese in strength and hardness with annealing at temperature above $550^{\circ}C$, while elongation increased rapidly above $600^{\circ}C$. At $700^{\circ}C$, hardness and strength decreased rapidly, and elongation increased steeply with an increasing reverse treatment time up to 10 min, whereas there were no significant change with a treatment time after 10 min. The reverse-transformed austenite showed an ultra-fine grain size less than $0.2{\mu}m$, which made it possible to strengthen the high manganese austenitic stainless steel.

Effect of Reverse Transformation on the Damping Capacity of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 감쇠능에 미치는 역변태의 영향)

  • Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-65
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the damping capacity in high manganese austenitic stainless steel. ${\alpha}^{\prime}$-martensite was formed with the specific direction and surface relief by deformation. Over 95% of the austenite phase was transformed to deformation-induced ${\alpha}^{\prime}$-martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. Damping capacity was increased up to $700^{\circ}C$, and than unchanged with the increasing annealing temperature. Damping capacity increased steeply with an increasing reverse treatment time up to 10min, whereas there were no significant change with a treatment time of more than 10 min. Damping capacity increased with an increasing the reversed austenite and was strongly affected by reversed austenite.

Phase Transformation Behavior on Aging Treatment in CuAINi Shape Memory Alloy (CuAINi 형상기억합금의 시효처리에 따른 상변태 거동)

  • Yang, G.S.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.213-222
    • /
    • 1993
  • This research was performed to investigate the transformation behavior and shape memory effect of Cu-13.5Al-4.5Ni(wt%) alloy with various aging temperature and time. The results obtained in this study are as follows: Transformation temperature was very increased when aging temperature is at $250^{\circ}C$. The variation of transformation temperature in first reverse transformation cycle and second was very significant, but there was little difference in case of 2nd and 3rd. Transformation temperature at various aging temperature was increased with increasing of aging temperature and time. Microvickers hardness was increased with increasing of aging temperature and time. It was found that ${\alpha}$ and ${\gamma}_2$ phase were created by aging of long time at high temperature.

  • PDF

Effect of Reverse Transformation Treatment on the Formation of Retained Austenite in 01.5%C-6%Mn Steels (0.15%C-6%Mn강의 잔류오스테나이트 생성에 미치는 역변태 열처리의 영향)

  • Hong, H.;Lee, O.Y.;Lee, K.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.35-45
    • /
    • 1998
  • The effects of alloying elements and the conditions of reverse transformation studied treatment on the formation of retained austenite in 0.15C-6%Mn-(Ti, Nb) steels has been studied. The addition of Ti and Nb to 0.15C-6%Mn steel shows no effect on the formation of retained austenite. In case of reverse transformation treatment at various temperatures, the shape of retained austenite was lath type, growing toward the longitudinal and thickness direction with increasing the heat treatment temperatures. The retained austenite formed by the reverse transformation treatment at higher temperature has a lot of stacking faults induced by the internal stress. The retained austenite was stabilized chemically by enrichment of C and Mn in the vicinity of a untransformed austenite and the chemical stability of retained austenite was decreased with increasing the heat treatment temperature and the holding time. It was effective to heat treat at $650^{\circ}C$ in order to obtain over 30vol.% of retained austenite, but more desirable to heat treat at $625^{\circ}C$ for a long time, considering the amount and quality of retained austenite.

  • PDF

Effect of Reverse Transformation on Mechanical Behavior of Low Carbon High Manganese Steels (저탄소 고망간강의 기계적 거동에 미치는 역변태 처리의 영향)

  • Hong, H.;Lee, O.Y.;Lee, K.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.278-287
    • /
    • 1997
  • The TRIP behavior in tensile deformation of retained austenite formed by reverse transformation treatment in 0.15%C-6%Mn-(Ti, Nb) steels has been investigated. The shape of retained austenite was almost a fine lath type with $0.1{\sim}0.3{\mu}m$ width and the two distinctly different transformation sequences of retained austenite, i) retained austenite${\rightarrow}$martensite and ii) retained austenite${\rightarrow}$deformation twin${\rightarrow}$martensite were revealed. The strength-elongation combination was increased with increasing the holdig time at low temperatures ($625^{\circ}C$) but decreased abruptly with increasing holding time at high temperatures ($675^{\circ}C$), owing to the lowering of ductility. The strength-elongation combination and TRIP effect was lower in tensile deformation in the range of $100{\sim}250^{\circ}C$ than room temperature. The tensile strengh and elongation of a reverse transformed steels with addition of Ti or Nb was 93kg/, 40% respectively, which is higher over 10% of strength without ductility loss than in 0.15%C-6%Mn steels.

  • PDF

Effect of Reverse Transformation Treatment on the Microstructure and Mechanical Properties of 0.15C-6Mn TRIP Steels (0.15C-6Mn TRIP강의 미세조직과 기계적 성질에 미치는 역변태 열처리의 영향)

  • Hong, H.;Lee, O.Y.;Song, K.H.
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.453-459
    • /
    • 2003
  • In this paper the effect of interstitial heat treatment on the microstructure and mechanical properties was examined both in the 0.15C-6Mn steels and 0.15C-6Mn steels added with Nb or Ti. This result will be applied into the development of a steel which has the properties of high strength and high ductility resulted from the transformation induced plasticity. The strength-elongation combination was increased as the holding time was increased when the temperature is at $625^{\circ}C$. However, the strength-elongation combination was decreased sharply as the holding time was increased when the temperature is at $675^{\circ}C$. The tensile strength and elongation of a reverse transformed steels added with Ti or Nb was 93 kg/$\textrm{mm}^2$ and 40%, respectively. This steel shows higher strength more than 10% of the 0.15C-6Mn steel without loss of ductility. The autenite formed from the reverse transformed treatment has a fine lath type, which has the width size of 0.1-0.3 $\mu\textrm{m}$. The TRIP sequence normally transforms the austenite to martensite, however, some of the sequence will produce retained austenite \longrightarrow deformation twin \longrightarrow martensite

Effect of Fabrication Processes on the Mechanical Properties of 0.14C-6.5Mn TRIP Steels (0.14C-6.5Mn TRIP강의 기계적 성질에 미치는 제조공정의 영향)

  • Lee, O-Yeon;Ryu, Seong-Il
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.431-437
    • /
    • 2001
  • This research was examined the effect of intercritical heat treatment on the mechanical Properties and retained austenite formation in 0.1C-6.5Mn steels for the development of a high strength high ductility steel. using of transformation induced plasticity due to retained austenite. The stability of retained austenite is very important for the good ductility and it depend on diffusion of carbon and manganese during reverse transformation. It is effective to heat treat at$ 645^{\circ}C$ in order to obtain over 30 vol.% of retained austenite. However, it is more desirable to heat treat at $620^{\circ}C$, considering the volume fraction and mechanical stability of retained austenite. The strength-elongation combination in cold rolled steel sheets after reverse transformed at $620^{\circ}C$ for 1hr was about 4000k9/mm7, but it decreased rapidly with increasing holding time at high temperature due to the decrease of ductility. The addition of 1.1%Si in 0.14C-6.5Mn TRIP steel does not improve the mechanical properties and retained austenite formation.

  • PDF

Effect of Austempering Factors and Mn Addition on Mechanical Properties of ADI (오스템퍼링 조건과 Mn의 양이 ADI의 기계적 성질에 미치는 영향)

  • Suh, Kwan-Soo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.12 no.5
    • /
    • pp.390-396
    • /
    • 1992
  • In this study, we investigated effect of austempering factors and Mn addition on mechanical properties of ADI with ferrite-bainite matrix by pearlite-bainite transformation treatment. Ductile cast iron specimens containing various of Mn were austenitized at 875$^{\circ}C$ for 350 sec or 925$^{\circ}C$ for 160 sec and then austempered at 300$^{\circ}C$ or 400$^{\circ}C$ for the various periods(5 to 30 min). Manganese increased pearlite volume fraction in as cast ductile cast iron. The obtained results are as follows ; 1) In austenitizing, hardness of sepecimens austenitized at 875$^{\circ}C$ for 350 sec was higher than that of 925$^{\circ}C$ for 160 sec. 2) In effect of austempering temperature, tensile strength and handness of specimens austempered at 300$^{\circ}C$ was higher than that of 400$^{\circ}C$. However, elongation had reverse tendency. 3) Increasing austempering time decreased hardness due to the increment of bainite and retained austenite fractions. However, toughness are increased.

  • PDF