• Title/Summary/Keyword: Reverberation model

Search Result 80, Processing Time 0.021 seconds

Headphone-based multi-channel 3D sound generation using HRTF (HRTF를 이용한 헤드폰 기반의 다채널 입체음향 생성)

  • Kim Siho;Kim Kyunghoon;Bae Keunsung;Choi Songin;Park Manho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.71-77
    • /
    • 2005
  • In this paper we implement a headphone-based 5.1 channel 3-dimensional (3D) sound generation system using HRTF (Head Related Transfer Function). Each mono sound source in the 5.1 channel signal is localized on its virtual location by binaural filtering with corresponding HRTFs, and reverberation effect is added for spatialization. To reduce the computational burden, we reduce the number of taps in the HRTF impulse response and model the early reverberation effect with several tens of impulses extracted from the whole impulse sequences. We modified the spectrum of HRTF by weighing the difference of front-back spec01m to reduce the front-back confusion caused by non-individualized HRTF DB. In informal listening test we can confirm that the implemented 3D sound system generates live and rich 3D sound compared with simple stereo or 2 channel down mixing.

Target Signal Simulation in Synthetic Underwater Environment for Performance Analysis of Monostatic Active Sonar (수중합성환경에서 단상태 능동소나의 성능분석을 위한 표적신호 모의)

  • Kim, Sunhyo;You, Seung-Ki;Choi, Jee Woong;Kang, Donhyug;Park, Joung Soo;Lee, Dong Joon;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.455-471
    • /
    • 2013
  • Active sonar has been commonly used to detect targets existing in the shallow water. When a signal is transmitted and returned back from a target, it has been distorted by various properties of acoustic channel such as multipath arrivals, scattering from rough sea surface and ocean bottom, and refraction by sound speed structure, which makes target detection difficult. It is therefore necessary to consider these channel properties in the target signal simulation in operational performance system of active sonar. In this paper, a monostatic active sonar system is considered, and the target echo, reverberation, and ambient noise are individually simulated as a function of time, and finally summed to simulate a total received signal. A 3-dimensional highlight model, which can reflect the target features including the shape, position, and azimuthal and elevation angles, has been applied to each multipath pair between source and target to simulate the target echo signal. The results are finally compared to those obtained by the algorithm in which only direct path is considered in target signal simulation.

A Stduy on Acoustics Estimation of PANSORI hall by Scale Model (축척모형을 이용한 판소리 홀의 음향평가에 관한 연구)

  • Shin, Young-Moo;Chung, Sa-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.66-72
    • /
    • 1996
  • In order to the sound effects and acoustics estimation of PANSORI hall, we are researched into the impulse response measuring and convolution integral of dry music(PANSORI) by using 1/10 scale model. Results are as follwo. First, impulse responses are measured by spark sound of electrodes and it is absolutely necessary many times of synchronous calculating for the obtain to enough S/N ratio. Second, a simulation technique of scale model is confirmed one of an effectual method of indoor acoustics estimation. Further, using the these new techniques and hearing test, its are recognized that reverberation time of PANSORI hall is about $1.0{\sim}$12.$ second suitable.

  • PDF

FEASIBILITY STUDY OF SOUND POWER BASED ACTIVE NOISE CONTROL STRATEGIES FOR GLOBAL NOISE REDUCTION

  • Kang, Seong-Woo;Kim, Yang-Hann
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.785-790
    • /
    • 1994
  • The active noise control which regards the acoustic power as a target function to be minimized, is analyzed to test its feasibility of which simplifies the measurement system compared with the global acoustic energy based active noise control system. In fact, it is found that the acoustic power based active noise control strategy is equally likely as good as the global acoustic energy based active noise control method if the acoustic field of interest is diffusive or very low model density one. In the intermediate model density field, we also demonstrate that the power based control gives the similar results as the energy based control in terms of global sound energy reduction for the lightly damped enclosure which might be most important system in practical application. From all the theoretical and power based control strategy is dependent on the characteristics of the acoustic field to be controlled; i.e., the model density distribution, the degree of reverberation, and on the strength of modal interaction of the control source with the primary source; i.e., the location of control source.

  • PDF

CONCERT HALL ACOUSTICS - Physics, Physiology and Psychology fusing Music and Hall - (콘서트홀 음향 - 음악과 홀을 융합시키는 물리학, 생리학, 심리학 -)

  • 안도요이찌
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.3-8
    • /
    • 1992
  • The theory of subjective preference with temporal and spatial factors which include sound signals arriving at both ears is described. Then, auditory evoked potentials which may relate to a primitive subjective response namely subjective preference are discussed. According to such fundamental phenomena, a workable model of human auditory-brain system is proposed. For eample, important subjective attributes, such as loudness, coloration, threshold of preception of a reflection and echo distrubance as well as subjective preference in relation to the initial time delay gap between the direct sound and the first reflection, and the subsequent reverberation time are well described by the autocorrelation function of source signals. Speech clarity, subjective diffuseness as well as subjective preference are related to the magnitude of inter-aural crosscorrelation function (IACC). Even the caktail party effects may be eplained by spatialization of human brain, i.e., independence of temporal and spatial factors.

  • PDF

Ship Radiated Noise Measurement Methods and Accuracy Analysis (선박 방사소음의 측정방법 및 정확도 해석)

  • Lee, Phil-Ho;Yoon, Jong-Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.738-748
    • /
    • 2005
  • The ship radiated noise level fluctuates by the difference of interference and reverberation according to measurement methods and environmental conditions. These phenomena cause error of the source level estimation even in the same environment conditions. This paper describes a quantitative analysis and a reduction method for an error value to the source level estimation in spatial and temporal interference environment. The design criteria of the radiated noise measurement array composed of omni-directional hydrophones and the source level accuracy in the deep water range are given. The source level accuracy in the shallow water range is also derived based on the statistical model of the multiple reflection paths. The results are verified using the water tank experiment and the sea trial.

Performance Comparison of Image Transmission in Underwater Acoustic Environment (수중 음향 환경에서의 영상 전송 성능 비교분석)

  • Lee, Seung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2008
  • Underwater acoustic(UWA) communication is one of the most difficult field in terms of severe channel environments such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of the image transmission using vertical sensor array instead of single sensor in the viewpoint of bit error rate(BER), constellation diagram, and received image quality.

Study of sound absorption characteristics using the sintered aluminium plate (알루미늄 소결재를 이용한 흡음 특성 연구)

  • 노대호;김재수;윤진국;강현주;신종철;김원용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1071-1076
    • /
    • 2002
  • The purpose of this paper is to examine sound absorption characteristics of sintered Al(aluminum) plate. Comparison between experiment and theoretical analysts by using empirical formula are made. Based on comparison. it is found that Voronina model gives more reasonable explanation for sound absorption characteristics of sintered Al plates. Effect of air gap with varying the thickness of plates are also investigated, which concludes that the air gap generally increase absorption but for too thick thickness of Al plates. Al plates with air gap shows 0.85∼0.9 of NRC(Noise Reduction Coefficient) measured in reverberation room. which is comparable to glass wool. Comparison between normal and random Incident absorption shows that random incident absorption is higher than normal incident absorption.

  • PDF

Inverse estimation of boundary characteristics by using underwater reverberation signals (수중 잔향음신호를 이용한 경계면 상태 역추정 알고리즘)

  • 김상균
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.45-50
    • /
    • 1996
  • 천해에서 얻은 잔향음신호를 역추정 알고리즘으로 분석하여 자료수집 당시의 환경 변수인 해상풍의 세기와 해저면의 상태를 추정하는 방법에 대하여 기술하였다. 소오나 시스템과 잔향음신호 수집 당시의 환경 자료를 알고 있다면 음원에서 방사된 음파가 해수면에 처음 도달하는 시간과 수평입사각을 multipath eigenray model에 의해서 계산할 수 있고 이 정보를 이용하여 수신된 잔향음 신호를 분석하여 해수면에 의한 산란잔향음 준위와 시간을 계산할 수 있다. 해수면 후방산란강도는 수평입사각, 음원의 주파수, 해상풍의 세기 등에 의해 특징지어지며 계산된 잔향음 준위로부터 소오나 방정식을 이용하여 후방산란강도를 알아낼 수 있다. 이 후방산란강도를 입력자료로 하여 Method of Small Perturbation이론과 Chapman과 Harris가 유도한 실험식을 사용하여 입력된 값과 일치할 때까지 후방산란강도를 계산하여 이때의 환경변수를 찾아내었다. 한편 해저면 잔향음신호는 표준화된 후방산란강도값들의 PDF를 만들어 그 분포양상을 분석하였다. 본 논문에서 사용된 알고리즘의 검증을 위해서는 보다 다양한 환경하에서 실시된 많은 음향괸측자료를 필요로 한다.

  • PDF

Evaluation of Image Transmission for Underwater Acoustic Communication

  • Lee Seung-Woo;Choi Byung-Woong;Shin Chang-Hong;Kim Jeong-Soo;Lee Kyun-Kyung
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.110-113
    • /
    • 2004
  • Underwater acoustic(UWA) communication is one of the most difficult field because of several factors such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of vertical sensor array than that of single sensor in the viewpoint of bit error rate(BER), constellation output, and received image quality.

  • PDF