• 제목/요약/키워드: Retrofitting method

검색결과 184건 처리시간 0.029초

An Experimental Study on Thermal Prestressing Method for Strengthening Concrete Bridge (콘크리트 교량의 보강을 위한 온도 프리스트레싱 공법의 실험적 연구)

  • Ahn, Jin-Hee;Kim, Jun-Hwan;Choi, Kyu-Tae;Kim, Sang-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • 제19권4호
    • /
    • pp.483-490
    • /
    • 2007
  • Traditional external post-tensioning method using either steel bars or tendons is commonly used as a retrofitting method for concrete bridges. However, the external post-tensioning method has some disadvantages such as stress concentration at anchorages and inefficient load carrying capability regarding live loads. Thermal prestressing method is a newly proposed method for strengthening and rehabilitation of concrete girder bridges. Founded on a simple concept of thermal expansion and contraction of steel, the method is a hybrid method of external post-tensioning and steel plate bonding, combining the merits of two methods. In this paper, basic concepts of the method are presented and an illustrative experiment is introduced. From actual experimental data, the thermal prestressing effect is substantiated and the FEM approach for its analysis is verified.

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제19권1호
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • 제27권2호
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Risk Assessment for Retrofitting an Electrolysis Type Ballast Water Treatment System on an Exiting Vessel (현존선에 전기분해방식 선박평형수 처리장치 설치를 위한 위험도 평가 분석)

  • JEE, Jae-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • 제29권3호
    • /
    • pp.665-676
    • /
    • 2017
  • Over the past several years, sea trade have increased traffic by ships which highlighted a problem of unwanted species invading the surrounding seas through ship's ballast water discharge. Maritime trade volume has continuously increased worldwide and the problem still exists. The respective countries are spending billions of dollars in an effort to clean up the contamination and prevent pollution. As part of an effort to solve marine environmental problem, BWM(Ballast Water Management) convention was adopted at a diplomatic conference on Feb. 13 2004. In order to comply harmoniously this convention by each country. This convention will be effective after 12 months from the date which 30 countries ratified accounting for more than 35% of the world merchant shipping volume. On Sep. 8 2016, Finland ratified this convention and effective condition was satisfied as 52 states and world merchant vessel fleet 35.1441%. Thus, after Sep. 8 2017, all existing vessels shall be equipped with BWTS(Ballast Water Treatment System) in accordance with D-2 Regulation, which physically handles ballast water from ballast water exchange system(D-1 Regulation). In this study, we analyzed in detail the optimal design method using the Risk Analysis and Evaluation technique which is mainly used in the manufacturing factory or the risky work site comparing with the traditional design concept method applying various criteria. The Risk Assessment Method is a series of processes for finding the Risk Factors in the design process, analyzing a probility of the accident and size of the accident and then quantifying the Risk Incidence and finally taking measures. In this study, this method was carried out for Electrolysis treatment type on DWT 180K Bulk Carrier using "HAZOP Study" method among various methods. In the Electrolysis type, 63 hazardous elements were identified.

Local Behavior of Structural Details for Orthotropic Steel Deck Bridge with Longitudinal Rib of Open Section and Retrofitting Method of Fatigue Cracks (개단면리브를 갖는 강바닥판 교량의 국부거동 분석 및 피로균열 보강방안)

  • Lee, Sung Jin;Kyung, Kab Soo;Lee, Hee Hyun;Jeon, Jun Chang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제17권2호
    • /
    • pp.33-44
    • /
    • 2013
  • Although many studies have been performed for the structural details of orthotropic steel deck, most of them were focused on the trough rib of standard type, but not for orthotropic steel deck with longitudinal rib of open section used at beginning of the deck. In order to investigate the cause of fatigue crack for orthotropic steel deck bridge serviced 31 years with longitudinal rib of open section, in this study, the behavior characteristics of target structural details were analyzed based on measurement data under real traffic condition. Also the typical loading truck passing the target bridges was estimated with the structural analysis detailed, and the stresses and deformation patterns of target structural details were analyzed by performing the detailed structural analysis. Based upon the analysis, retrofitting methods of the fatigue crack were suggested and its validation was examined. From this study, it was clarified that fatigue crack of longitudinal rib with open section were affected with the stress increment by shear deformation in the rib and the occurrence of alternative stress due to moving vehicle. In addition, it was known that it is important to perform fatigue design reflected the local behavior of the structural details.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제10권3호
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제37권6호
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

Seismic Retrofit of High-Rise Building with Deformation-Dependent Oil Dampers against Long-Period Ground Motions

  • Aono, Hideshi;Hosozawa, Osamu;Shinozaki, Yozo;Kimura, Yuichi
    • International Journal of High-Rise Buildings
    • /
    • 제5권3호
    • /
    • pp.177-186
    • /
    • 2016
  • Along the subduction-zone of the western Japanese islands, large earthquakes are expected occur around the middle of this century, and long-period ground motions will reach major urban areas, shaking high-rise buildings violently. Since some old high-rise buildings were designed without considering long-period ground motions, reinforcing such buildings is an important issue. An effective method to reinforce existing high-rise buildings is installing additional dampers. However, a problem with ordinary dampers is that they require reinforcement of surrounding columns and girders to support large reaction forces generated during earthquake ground motion. To solve this problem, a deformation-dependent oil damper was developed. The most attractive feature of this damper is to reduce the damping force at the moment when the frame deformation comes close to its maximum value. Due to this feature, the reinforcement of columns, girders, and foundations are no longer required. The authors applied seismic retrofitting with a deformation-dependent oil damper to an existing 54-story office building (Shinjuku Center Building) located in Shinjuku ward, Tokyo, in 2009 to suppress vibration under the long period earthquake ground motions. The seismic responses were observed in the 2011 Tohoku Earthquake, and it is clarified that the damping ratio was higher and the response lower by 20% as compared to the building without dampers.

Numerical investigation on the behavior of SHS steel frames strengthened using CFRP

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.561-568
    • /
    • 2017
  • Steel frames are widely used in steel structures. Exiting steel structures may be needed to strengthen for various reasons. Carbon Fiber Reinforced Polymers (CFRP) is one of the materials that are used to strengthen steel structures. Most studies on strengthening steel structures have been done on beams and steel columns. No independent study, to the researcher's knowledge, has studied the effect of CFRP strengthening on steel frames. This study explored the use of CFRP composite on retrofitting square hollow section (SHS) steel frames, using numerical investigations. Ten Finite Element (FE) models, which were strengthened with CFRP sheets, were analyzed under different coverage length, number of layers, and location of CFRP composite. One FE model without strengthening was analyzed as a control FE model to determine the increase of the ultimate load in the strengthened steel frames. ANSYS software was used to analyze the SHS steel frames. The results showed that the coverage length and the number of layers of CFRP composite have a significant effect on increasing the ultimate load of the SHS steel frames. The results also showed that the location of CFRP composite had no similar effect on increasing the ultimate load and the amount of mid span deflection of the SHS steel frames.

CFRP strengthening of steel columns subjected to eccentric compression loading

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.87-94
    • /
    • 2017
  • Steel structures often require strengthening due to the increasing life loads, or repair caused by corrosion or fatigue cracking. Carbon Fiber Reinforced Polymers (CFRP) is one of the materials used to strengthen steel structures. Most studies on strengthening steel structures have been carried out on steel beams and steel columns under centric compression load. No independent article, to the author's knowledge, has studied the effect of CFRP strengthening on steel columns under eccentric compression load, and it seems that there is a lack of understanding on behavior of CFRP strengthening on steel columns under eccentric compression load. However, this study explored the use of adhesively bonded CFRP flexible sheets on retrofitting square hollow section (SHS) steel columns under the eccentric compression load, using numerical investigations. Finite Element Method (FEM) was employed for modeling. To determine ultimate load of SHS steel columns, eight specimens with two types of section (Type A and B), strengthened using CFRP sheets, were analyzed under different coverage lengths, the number of layers, and the location of CFRP composites. Two specimens were analyzed without strengthening (control) to determine the increasing rate of the ultimate load in strengthened steel columns. ANSYS was used to analyze the SHS steel columns. The results showed that the CFRP composite had no similar effect on the slender and stocky SHS steel columns. The results also showed that the coverage length, the number of layers, and the location of CFRP composites were effective in increasing the ultimate load of the SHS steel columns.