• Title/Summary/Keyword: Retina

Search Result 398, Processing Time 0.034 seconds

The Photoreceptor Populations in the Retina of the Greater Horseshoe Bat Rhinolophus ferrumequinum

  • Kim, Tae-Jin;Jeon, Young-Ki;Lee, Jea-Young;Lee, Eun-Shil;Jeon, Chang-Jin
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.373-379
    • /
    • 2008
  • Recently, we reported the existence of AII "rod" amacrine cells in the retina of the greater horseshoe bat Rhinolophus ferrumequinum (Jeon et al., 2007). In order to enhance our understanding of bat vision, in the present study, we report on a quantitative analysis of cone and rod photoreceptors. The average cone density was $9,535cells/mm^2$, giving a total number of cones of 33,538 cells/retina. The average rod density was $368,891cells/mm^2$, giving a total number of rods of 1,303,517 cells. On average, the total populations of rods were 97.49%, and cones were 2.51% of all the photoreceptors. Rod: cone ratios ranged from 33.85:1 centrally to 42.26:1 peripherally, with a mean ratio of 38.96:1. The average regularity index of the cone mosaic in bat retina was 3.04. The present results confirm the greater horseshoe bat retina to be strongly rod-dominated. The rod-dominated retina, with the existence of AII cells discovered in our previous study, strongly suggests that the greater horseshoe bat retina has a functional scotopic property of vision. However, the existence of cone cells also suggests that the bat retina has a functional photopic property of vision.

ERG Signal Modeling Based on the Retinal Model

  • Chae, S.P.;Lee, J.W.;Jang, W.Y.;Kim, M.N.;Kim, S.Y.;Cho, J.H.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.637-640
    • /
    • 2000
  • ERG signal represents the responses of the each layer of retina for the visual stimulus and accumulated responses according to the signal processing occurring in the retina. By investigating the reaction types of each wave of the ERG, various kinds of information for the diagnosis and the signal processing mechanisms in the retina can be obtained. In this paper, the ERG signal is generated by simulating of the volume conductor field of response of each retina layer and summing of them algebraically. The retina model used for simulation is Shah’s Computer Retina model which is one of the most reliable models recently developed. The generated ERG is compared with the typical ERG and shows a very close similarity. By changing the parameters of the retina model, the diagnostic investigation is performed with the variation of the ERG waveform.

  • PDF

EST analysis of regenerating newt retina

  • Hisatomi, Osamu;Hasegawa, Akiyuki;Goto, Tatsushi;Yamamoto, Shintaro;Sakami, Sanae;Kobayashi, Yuko;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.267-268
    • /
    • 2002
  • A vertebrate retina is an organ belonging to the central nerve system (CNS), and is usually difficult to regenerate except at an embryonic stage in life. However, certain species of urodele amphibians, such as newts and salamanders, possess the ability to regenerate a functional retina from retinal pigment epithelial (RPE) cells even as adults. After surgical removal of neural retinas from adult newt eyes, the remaining RPE cells lose their pigment granules, transdifferentiate into retinal progenitor cells, which further differentiate into various retinal neurons, and then finally reform a functional neural network. To understand the molecular mechanisms of CNS regeneration, we attempted to investigate the genes expressing in regenerating newt retina. mRNAs were isolated from regenerating retinas at 18-19 days after the surgical removal of the normal retina, and a cDNA library (regenerating retinal cDNA library) were constructed. Our EST analysis of 112 clones in the regenerating cDNA library revealed that about 70% clones are closely related to the genes previously identified. About 40% clones are housekeeping genes, and about 15% clones encode proteins related to the regulation of gene expression and to the proliferation of the cells. Sequences similar to neural retina- and RPE-specific genes were not detected at all. These results led us to suppose that the regenerating retinal cells are in a state considerably different from those of neither neural retina nor RPE cells.

  • PDF

A Study of the Retina Image Controllability using a Sledge (망막 영상 조절 장치에 관한 연구)

  • 이숙희;이영춘;양연식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.273-276
    • /
    • 1997
  • Seeing is an intelligent act. Retina is the most important part among the components of eye which is comprised of iris, pupil, lens, optic disk, and so forth. Because retina acts like a photo receiver to detect light from every object, if damaged, animals have a severe problem to live along with themselves and sometimes they lose their sight. In the ophthalmology, doctors use special instrument to see exact retina image of object and operate the surgery by rotating focus control knob. In this study, a basic test is done to achieve the auto focus control instrument. Specially made sledge and attenuator are installed on the optic bed to change the distance and laser power between the first reflective mirror and the second one. Control panel which is compiled by Visual C t t to control stepping motors ,laser power and photodiode are implemented with ADA-board.

  • PDF

Over-Expression of Ephrin-A5 in Mice Results in Decreasing the Size of Progenitor Pool through Inducing Apoptosis

  • Noh, Hyuna;Park, Soochul
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.136-140
    • /
    • 2016
  • Eph receptors and their ligands, ephrins, mediate cell-to-cell contacts in a specific brain region and their bidirectional signaling is implicated in the regulation of apoptosis during early brain development. In this report, we used the alpha(${\alpha}$)-Cre transgenic line to induce ephrin-A5 over-expression in the distal region of the neural retina. Using this double transgenic embryo, we show that the over-expression of ephrin-A5 was responsible for inducing massive apoptosis in both the nasal and temporal retinas. In addition, the number of differentiated retinal neurons with the exception of the bipolar neuron was significantly reduced, whereas the laminar organization of the mature retina remained intact. Consistent with this finding, an analysis of the mature retina revealed that the size of the whole retina-particularly the nasal and temporal regions-is markedly reduced. These results strongly suggest that the level of ephrin-A5 expression plays a role in the regulation of the size of the retinal progenitor pool in the neural retina.

Current Stimulator with Adaptive Supply Regulator for Artificial Retina Prosthesis (적응형 가변 전원 레귤레이터를 내장한 인공 망막용 전류 자극기)

  • Ko, Hyoung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.254-259
    • /
    • 2011
  • In this paper, a current stimulator circuit with adaptive supply regulator for retinal prosthesis is proposed. In current stimulation systems, the stimulating circuits with wide voltage swing range are needed due to the high impedance of the retina cell and microelectrodes. Thus, previous researches adopt the high voltage architecture to obtain the enough operating range. The high voltage architecture, however, could increase the power consumption and can damage the retina cells. The proposed circuit provides the adaptively regulated supply voltage by measuring the difference between desired stimulation current and the actual stimulation current. The proposed circuit can achieve the extended range of the allowable cell impedance, improved accuracy of the stimulation current, and higher biosafety.

A Computationally Efficient Retina Detection and Enhancement Image Processing Pipeline for Smartphone-Captured Fundus Images

  • Elloumi, Yaroub;Akil, Mohamed;Kehtarnavaz, Nasser
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.79-82
    • /
    • 2018
  • Due to the handheld holding of smartphones and the presence of light leakage and non-balanced contrast, the detection of the retina area in smartphone-captured fundus images is more challenging than retinography-captured fundus images. This paper presents a computationally efficient image processing pipeline in order to detect and enhance the retina area in smartphone-captured fundus images. The developed pipeline consists of five image processing components, namely point spread function parameter estimation, deconvolution, contrast balancing, circular Hough transform, and retina area extraction. The results obtained indicate a typical fundus image captured by a smartphone through a D-EYE lens is processed in 1 second.

Chemical Coupling between Horizontal Cells in the Catfish Retina

  • Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • The effects of GABA and glutamate on the horizontal cells were explored by an intracellular recording method to discern the mechanisms of receptive field formation by chemical coupling in the catfish outer retina. The results suggest that the horizontal cells of the catfish retina might use GABA as their transmitters and that the GABAergic system contributes to the formation of receptive fields of the horizontal cells. GABAC receptors may be involved in a chemical coupling between horizontal cells and concerned with the depolarizing actions by GABA on horizontal cells in the catfish retina. Since the chloride equilibrium potential is more positive than the dark membrane potential in horizontal cells, GABA released from a horizontal cell may depolarize the neighboring horizontal cells. Thus a chemical coupling between horizontal cells may be formed. $GABA_A$ receptors also may be involved in the negative feedback mechanism between photoreceptor and horizontal cell. And glutamate may be involved in connecting positive and negative feedback systems since it potentiated the GABA's actions. Therefore, it is presumed that large receptive fields in the catfish retina are formed not only by electrical coupling but also by chemical coupling between horizontal cells. And information travels laterally by pathways involving both electrical coupling composed of gap junctions and chemical coupling in the retinal network.

  • PDF

Vision Chip for Edge and Motion Detection with a Function of Output Offset Cancellation (출력옵셋의 제거기능을 가지는 윤곽 및 움직임 검출용 시각칩)

  • Park, Jong-Ho;Kim, Jung-Hwan;Suh, Sung-Ho;Shin, Jang-Kyoo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.188-194
    • /
    • 2004
  • With a remarkable advance in CMOS (complimentary metal-oxide-semiconductor) process technology, a variety of vision sensors with signal processing circuits for complicated functions are actively being developed. Especially, as the principles of signal processing in human retina have been revealed, a series of vision chips imitating human retina have been reported. Human retina is able to detect the edge and motion of an object effectively. The edge detection among the several functions of the retina is accomplished by the cells called photoreceptor, horizontal cell and bipolar cell. We designed a CMOS vision chip by modeling cells of the retina as hardwares involved in edge and motion detection. The designed vision chip was fabricated using $0.6{\mu}m$ CMOS process and the characteristics were measured. Having reliable output characteristics, this chip can be used at the input stage for many applications, like targe tracking system, fingerprint recognition system, human-friendly robot system and etc.

Photobiomodulation therapy activates YAP and triggers proliferation and dedifferentiation of Müller glia in mammalian retina

  • Seo-Yeon Kim;Myung-Jun Song;In-Beom Kim;Tae Kwan Park;Jungmook Lyu
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.502-507
    • /
    • 2023
  • Photobiomodulation therapy has been proposed as a promising therapeutic approach for retinal degenerative diseases. However, its effect on the regenerative capacity in mammalian retina and its intracellular signalling mechanisms remain unknown. Here, we show that photobiomodulation with 670 nm light stimulates Müller glia cell cycle re-entry and dedifferentiation into a progenitor-like state in both the uninjured and injured retina. We also find that 670 nm light treatment inhibits the Hippo pathway, which is activated in Müller glia following NaIO3-induced retinal injury. YAP, a major downstream effector of the Hippo signalling pathway was translocated into the nucleus of Müller glia along with YAP dephosphorylation in retina treated with 670 nm light. Deficiency of YAP attenuated Müller glia cell cycle re-entry and dedifferentiation. Our data reveal that the Hippo-YAP signalling pathway is associated with the photostimulatory effect on regenerative response in mammalian retina, and suggest a potential therapeutic strategy for retinal degenerative diseases.