• Title/Summary/Keyword: Retaining Selection

Search Result 49, Processing Time 0.028 seconds

A Study of the Optimal Displacement Analysis Algorithm for Retaining Wall Displacement Measurement System Based on 2D LiDAR Sensor (2D LiDAR 센서 기반 흙막이 벽체 변위 계측 시스템의 최적 변위 분석 알고리즘 연구)

  • Kim, Jun-Sang;Lee, Gil-yong;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.2
    • /
    • pp.70-78
    • /
    • 2023
  • Inclinometer has several problems of 1)difficulty installing inclinometer casing, 2) measuring 2D local lateral displacement of retaining wall, 3) measurement by manpower. To solve such problems, a 2D LiDAR sensor-based retaining wall displacement measurement system was developed in previous studies. The purpose of this study is to select a displacement analysis algorithm to be applied in the retaining wall displacement measurement system. As a result of the displacement analysis algorithm selection, the M3C2 (Multiple Model to Model Cloud Comparison) algorithm with a displacement estimation error of 2mm was selected as the displacement analysis algorithm. If the M3C2 algorithm is applied in the system and the reliability of the displacement analysis result is secured through several field experiments. Convenient management of the displacement for the retaining wall is possible in comparison with the current measurement management.

A Study on Selection of Target Performance for Performance Evaluation and Maintenance of Retaining Wall in Korea (국내 옹벽의 성능평가와 유지관리를 위한 목표 성능 선정에 관한 연구)

  • Choi, Jae Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.111-121
    • /
    • 2019
  • In the revised 2019 Guidelines for Facility Safety and Maintenance, the existing safety-oriented facility evaluations have expanded from performance evaluations to added durability and serviceability. This expansion reflects the life cycle of facilities and the service abilities of facilities, which are becoming a global issue. However, since the performance evaluation of facilities is linked to repairing and reinforcement, the related researches such as the correlation of each performance and the target performance related to the decision on priority are necessary. In this study, through the analysis of historical data of existing facility safety evaluation results centered on the retaining earth wall installed in domestic road facilities, the appropriate target performance was suggested for the maintenance of the facility based on the revised performance evaluation. Also, the performances on the actual two retaining walls were evaluated for example and analyzed the verification of the target performance. Besides, new indicators were presented to add serviceability to the performance evaluation of retaining earth walls consisting of safety and durability.

Optimizing Laser Scanner Selection and Installation through 3D Simulation-Based Planning - Focusing on Displacement Measurements of Retaining Wall Structures in Small-scale Buildings -

  • Lee, Gil-yong;Kim, Jun-Sang;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.68-82
    • /
    • 2024
  • The planning stage of laser scanning is crucial for acquiring high-quality 3D source data. It involves assessing the target space's environment and formulating an effective measurement strategy. However, existing practices often overlook on-site conditions, with decisions on scanner deployment and scanning locations relying heavily on the operators' experience. This approach has resulted in frequent modifications to scanning locations and diminished 3D data quality. Previous research has explored the selection of optimal scanner locations and conducted preliminary reviews through simulation, but these methods have significant drawbacks. They fail to consider scanner inaccuracies, do not support the use of multiple scanners, rely on less accurate 2D drawings, and require specialized knowledge in 3D modeling and programming. This study introduces an optimization technique for laser scanning planning using 3D simulation to address these issues. By evaluating the accuracy of scan data from various laser scanners and their positioning for scanning a retaining wall structure in a small-scale building, this method aids in refining the laser scanning plan. It enhances the decision-making process for end-users by ensuring data quality and reducing the need for plan adjustments during the planning phase.

A Study on the Sub-elements of the Top-down Construction Method Selection Model using Weighting Factor in Downtown Area (가중치 분석을 통한 도심지 Top-Down 공사에서의 공법요소 선정 모델 개발에 관한 연구)

  • Park, Chang-Wook;Moon, Seung-Yun;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.61-69
    • /
    • 2008
  • The size of the construction projects become huge and complex, and the depth of excavation for the underground structures become deeper. Also the working area is not enough for loading materials and temporary facilities. This is the most case of recent construction projects in downtown area. Top-down is the most useful method for this kind of construction projects. Top-down construction method consists of supporting method, retaining wall type, foundation type and construction direction such as up-down or up-up. construction managers have to select sub-elements for top-down construction method in planning phase. This study is to suggest the sub-elements selection model for the top-down construction method, and the case study is conducted for evaluating this model.

Selection of design friction angle: a strain based empirical method for coarse grained soils

  • Sancak, Emirhan;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • In the design of geotechnical structures, engineers choose either peak or critical state friction angles. Unfortunately, this selection is based on engineer's preference for economy or safety and lacks the assessment of the expected level of deformation. To fill this gap in the design process, this study proposes a strain based empirical method. Proposed method is founded on the experimentally supported assumption that higher dilatancy angles result in more brittle soil response. Using numerous triaxial test data on ten different soils, an empirical design chart is developed that allows the estimation of shear strain at failure based on soil's peak dilatancy angle and mean grain diameter. Developed empirical chart is verified by conducting a small scale retaining wall physical model test. Finally, a design methodology is proposed that makes the selection of design friction angle in structured way possible based on the serviceability limits of the proposed structure.

Proposal of the Modified Management Criteria Value in Earth Retaining Structure using Measured Data (계측자료를 이용한 흙막이 구조물의 수정된 관리기준치 제안)

  • Kim, Jueng-Kyu;Park, Heung-Gyu;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.95-103
    • /
    • 2016
  • The absolute value management method is widely used in the most of the earth retaining construction, which evaluates the safety by comparing measurement result and management criteria. Therefore, the management criteria is the standard to evaluate the safety of the site, and in other words, the criteria is a direct factor of the evaluation. That means that the safety of the site can not be acquired if the management criteria is not proper, even though the measurement system is perfectly set. However, many of field technicians do not have rely on the current management criteria, and they even recognize the necessity of the revision. Therefore, in this study, the necessity of the revision was studied. Also, the optimum criteria selection and the application were performed based on the test results of earth retaining deflection and probabilistic theory. The absolute value management method was used for this study. The details are tabulated.

Reinforced Effect of Earth Body Reinforced by Attachment-type Geogrid (부착형 지오그리드 보강토체의 보강효과)

  • 고태훈;이성혁;황선근;이진욱
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.277-282
    • /
    • 2002
  • The objective of this study is to suggest the optimal method for reinforced earth retaining wall through the appropriate selection of reinforcing materials, development of design criteria. Thus, the efficient land utilization and securing safety in the train operation in service lines could be achieved. For this goal, a large scale shear laboratory test was carried out to evaluate the reinforced effect of earth body reinforced by attachment-type geogrid.

  • PDF

Analysis of Factors for Selecting Construction Methods for Underground Structures (지하구조물의 공법선정을 위한 요인분석)

  • Kang, Hyun-Jung;Rhim, Hong-Chul;Park, Sang-Hyun;Lee, Ghang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.37-40
    • /
    • 2007
  • As a demand for underground structure is increasing with more parking and retail spaces required. Various construction methods are reviewed and selected for each specific site for economical and fast construction. In this study, factors for selecting construction methods were categorized for substructure construction. Construction processes of substructure are consisted of methods for excavation, earth retaining systems, and placement of slabs. Factors for the selection of substructure construction method are the condition of surrounding, geotechnical, information and constraint by comfortness for others nearby. After survey for the construction data of 5 different sites, analysis about reliable substructure construction selection method was suggested.

  • PDF

Decision Making Model using Multiple Matrix Analysis for Optimum Construction Method Selection (다중 매트릭스 분석 기법을 이용한 최적 건축공법 선정 의사결정지원 모델)

  • Lee, Jong-Sik;Lim, Myung-Kwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.331-339
    • /
    • 2016
  • According to high-rise, complexation, and enlargement of buildings, various construction methods are being developed, and the significance of construction method selection about main work types has emerged as a major interest. However, it has been pointed out that hand-on workers cannot consider project characteristics carefully, and they lack an objective standard or reference for main construction method selection. Hence, the selection is being made depending on hand-on workers' experience and intuition. To solve this problem, various studies have proceeded for construction method selection of main work types using Artificial Intelligence like Fuzzy, AHP and Case-based reasoning. It is difficult to apply many different kinds of construction method selection to every main work type with consideration for characteristics of work types and condition of a construction site when selecting construction method in the field. Accordingly, this study proposed the decision-making model which can apply to fields easily. Using matrix analysis and liner transformation, this study verified consistency of study models applied in the process of soil retaining selection with a case study.

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.