Purpose - Faced with the great change of the 4th industrial revolution and the addition of the COVID-19 pandemic, great confusion and crises are occurring in the retail environment as well. The purpose of this study is to suggest the necessity of establishing a methodology for applying retail tech to offline distribution channels in crisis. Research design, data, and methodology - After examining the recent developments of representative fields to which retail technology is applied, it is rearranged through consideration through previous studies. Result - The retail industry must transform into digital commerce through digital transformation. According to the development of retail technology, the distribution industry is at a time of change from the stage of brokering product and service transactions to a structure that creates value based on information on production and consumption. The business model of the distribution industry must be converted to a platform business model in which both consumers and producers become users. Conclusion - In-depth analysis of the cases has not been conducted, and there are limitations in that the development is somewhat insufficient due to insufficient prior research data. However, it is meaningful to suggest the necessity of finding a methodology for applying retail technology to overcome the crisis of offline retailers through quantitative research on the retail technology area.
Building on Technology Readiness and Acceptance Model(TRAM), the study aimed to examine how technology readiness affects consumers' perceptions of ease of use, usefulness, and risk, which in turn predict their intention to use retail service robots. Specifically, the study proposed that technology readiness motivators (optimism and innovativeness) would influence perceived ease of use and usefulness, while technology readiness inhibitors (discomfort and insecurity) would affect perceived risk. The study further examined if the perception factors (ease of use, usefulness, and risk) contribute to intention to use retail service robots. A survey method was used with data collected from Korean consumers. The final sample size was 418. The data was analyzed using structural equation modeling. Findings of the study revealed that technology readiness motivators positively affected perceived ease of use and usefulness while innovativeness had no impact on usefulness. All the inhibitors increased perceived risk. Lastly, as hypothesized, perceptions of ease of use, usefulness, and risk predicted intention to use retail service robots. This study extended the retail technology literature by applying and validating TRAM to the context of consumer acceptance of retail service robots. The study further helped marketers and retailers by highlighting the importance of technology readiness in improving consumer perceptions and responses towards retail service robots.
This study investigated the influence of the perceived characteristics of AR fashion retail technology on value co-creation and continued use intention. This study also examines the moderating role of technology readiness in the effects of the perceived characteristics of AR fashion retail technology on value co-creation. A total of 241 university students who had experience using AR fashion retail technology completed the questionnaire. The results were as follows. First, there were five factors in the perceived characteristics of AR fashion retail technology: presence, aesthetic attractiveness, ease of use, shopping usefulness, and perceived enjoyment. Second, aesthetic attractiveness, shopping usefulness, and perceived enjoyment had positive impacts on value co-creation. Third, value co-creation had a positive impact on continued use intention of AR retail technology. Fourth, there were significant differences in the effect of aesthetic attractiveness and shopping usefulness on value co-creation by the innovativeness dimension of technology readiness. Fifth, there was a significant difference in the effect of ease of use on value co-creation by the optimism dimension of technology readiness. The results of this study should provide guidance for marketers or retailers interested in the application of AR fashion retail technology in their stores.
Purpose: After using the Internet, the world is changing through several paradigms, and the retail industry, which is essential to living in the world, is also changing rapidly. In this review paper, the requirements that the retail industry should consider and prepare in accordance with the rapidly changing paradigm were reviewed according to the current situation of the times. Research design, data, and methodology: It is a review of technological development using PRISMA flow diagram, retail change, and necessity in April 2022, and a review of the digital environment to be applied to the retail industry in the future. Results As the current situation and changes of retail, and the development of IT technology, reviews on the retail business applying the 4th Industrial Revolution, the Internet of Things and artificial intelligence were collected, and the direction of the retail industry was suggested. Conclusions: The direction for the retail industry in preparation for developing technologies was presented. In addition, this study is a review paper that suggests the need for research on active introduction of new technologies to the beauty market that is very close to human life and economically helpful as IT technology for the 4th industrial revolution develops rapidly.
International Journal of Advanced Culture Technology
/
제8권1호
/
pp.56-61
/
2020
Customer satisfaction in retail stores are considerably affected by checkout services. Self-checkout counters have been installed in order to reduce waiting times at checkout in retail stores. However, it is uncertain whether the self-checkout lanes actually decrease the average waiting time of customers. Rather, there are some problems associated with self-checkout lanes such as theft or service failure due to technological problems. This study analyzes comparison between self-checkout and regular staffed-checkout lanes, based on the dataset collected from a retail store in Poland. As a result, we observe that the average transaction times were longer at the self-checkout lanes though fewer products were purchased than at the staffed-checkout lanes. In addition, the customers who buy more products tend to use self-checkouts less frequently. We also check that transaction times are proportional to the number of products customers purchase, and that both the time to scan one item and the fixed time related to checkout are significantly longer at the self-checkout counters. As there has been very few research on the effectiveness of self-checkouts, this study can be the first step to investigate managerial insights on checkout services in retail stores.
Purpose: This study aims to clarify the behavioral extraction and ability of venture merchants, who actively challenge commerce in the face of harsh living environments. Research design, data and methodology: Adopting the concept of retail functions and retail skills, this study examines how venture merchants perform retail functions, and identifies the required retail skills. This study analyzed primary data obtained through an interview with a bookstore called Lunuganga. Results: The venture merchant purchases products based on his self-assertion and creates an original "store identification." Moreover, he draws a changing "own-store customers image" and acquires "own-store customers," that is, customers acquired by him by building an original store identity. He sells products to "own-store customers" who identify with the store. The retail skills identified as required by venture merchants to carry out such retail functions were "skill to draw a store identification" and "skill to draw own-store customer image." Conclusions: Venture merchants' unique retail functions and retail skills suggest a new basis for the existence of small and medium-sized retailers. It is necessary to build a generalized theoretical hypothesis model by refining the concept presented in this paper by repeating research targeting venture merchants in the same industry and different industries.
Purpose: This study aims to identify the role of technological progress in the distribution sector in Saudi Arabia. Research design, data, and methodology: The study applies the Autoregressive Distributed Lag (ARDL) approach to estimate the Cobb Douglas production function of the wholesale and retail trade sector in Saudi Arabia, relied on annual data from the General Authority for Statistics from 2005 to 2019. Results: The results show that there is a long run relationship between the production of the wholesale and retail trade sector in KSA and the factors of production labour, capital and technology progress. The elasticity of the wholesale and retail trade production with respect to capital and labour are 0.26 and 0.78 respectively; the coefficients are positive and statistically significant. The wholesale and retail trade sector is operating under increasing returns to scale. The main result indicates that the elasticity of the wholesale and retail production with respect to the technology progress is 4.62%, which is positive and statistically significant. Conclusions: The study concluded that technological progress has a positive contribution to the growth of the distribution sector in KSA. Therefore, the technological progress can improve the productivity and efficiency of the resources allocated to the dis.
Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
제23권9호
/
pp.1-7
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
제23권8호
/
pp.210-216
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
Purpose: The covid-19 pandemic has led to the implementation of strict measure such as social distancing and lockdown around the globe and these measures has largely affected the retail industry. This study is to examine the negative impacts of the covid-19 pandemic on the acceleration of startups innovation in the retail industry. Research design, data and methodology: The current authors used the qualitative content approach and the data collection process in this procedure starts with a formulated and direct research question which means that rather than asking how a change in one variable leads to a change in the other, the research question seeks to understand the meanings and experiences derived from the piece of communication. Results: This section outlines how retail companies can overcome the adversely effect of the Covid-19 pandemic on the acceleration of startup innovation in the retail industry. The solutions are mostly from peer-reviewed articles. All retailers should respond to the negative impacts of the covid-19 pandemic to ensure their continuity while accelerating startups innovations in the sector. Conclusion: This study implies that the retailing industry, alongside other sectors, should respond to the negative effects of the covid-19 pandemic by encouraging innovations and adaptations. The study has shown that flexibility is very crucial to adapt during the crisis
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.