• Title/Summary/Keyword: Restructurable Control

Search Result 2, Processing Time 0.015 seconds

A Research on Developing the Fault Tolerant Control System using Restructurable Control Method (구조 변경 제어 방식을 이용한 고장 허용 제어 시스템 설계에 관한 연구)

  • Hong, Ho-Taek;Kim, Yong-Min;Park, Jae-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1259-1263
    • /
    • 1999
  • In this paper, a method to guarantee system continuity is developed, which can be applied to discontinuity problem in the time domain of restructurable control system. This method can be summarized as input alternation using weight change considering convergence speed of system mode. Input is changed from 'system continuity guarantee input,' which is defined as a input that minimizes the change of state variables, to 'alternative controller input,' which is selected by Neil's PI/EAM[3]. AIDC aircraft model is used for simulation. By showing the waveform of system input and state variable, we can sure that this method is effective for depression of system shock like jerk.

  • PDF

Fail safe and restructurable flight control system

  • Kanai, K.;Ochi, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.21-29
    • /
    • 1994
  • This paper presents a method to accommodate failures that affect aircraft dynamical characteristics, especially control surface jams on a large transport aircraft. The approach is to use the slow effectors, such as the stabilators or engines, in the feedforward manner. The simulation results indicate the performance of the RFCS. In some cases of control surface jam, the aircraft cannot recover without using the stabilators. Although the inputs to the slow effectors are determined using the nominal parameters, the effects of parameter change can be compensated by adjusting the control parameters for the fast surfaces. In the case of rudder jam, if the remaining control surfaces and the differential thrust cancel the moments produced by the stuck rudder, using the engine control improves time responses and reduces deflection angles of the control surfaces. If not, however, the aircraft starts a large rolling motion following a yawing motion. In that case, the stabilators should be used to damp the induced rolliig motion, instead of trying to directly cancel the moments caused by the stuck rudder. Unfortunately, the proposed control law for the stabilators does not give such inputs, because it does not take into account the dynamical effects which stuck surfaces have on the aircraft motions. However, we have shown through simulation that the aircraft can be recovered by giving the stabilators the control inputs that counteract the induced rolling moment. Besides, the method has also been shown through simulation to be effective in maintaining control during a situation similar to an actual accident. Finally let us mention a problem with the RFCS. As stated above, we have not established a method to select a trim point which call be reached as easily as possible using the remaining control effectors. In fact, recovery performance considerably depends on the trim states. As pointed out in Ref. 11, finding the best trim point for impaired aircraft will be one of the most difficult questions in RFCS design.

  • PDF