• 제목/요약/키워드: Resting Surface

검색결과 108건 처리시간 0.023초

탄성지반 위의 축대칭 하중을 받는 원판의 접촉응력 해석에 관한 연구 (The Study on the Determination of the Contact Area of the Circular Plate Resting on Elastic Half-space under Axisymmetric Loading)

  • 조현영;정진환;김성철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.87-94
    • /
    • 1997
  • The circular plate resting on Boussinesq's half-space model under axisymmetric loading is studied by a finite element procedure to evaluate the distribution of contact pressure between plate and elastic half-space. The displacement of half-space due to axisymmetric surface loading can be evaluated by double integration of Boussinesq's solution. On that case the analytical integration can be executed for the radial direction but the analytical integration for the circumferential direction is impossible and the numerical integration should be considered. With the radial integration we can get non-dimensional function. Then the numerical integration for the formula is executed for the circumferential direction and the results are approximated 5th order Polynomials by using the least square method. With these 5th order approximate formula, the flexibility matrix of half-space is constructed as the coefficient matrix of nodal contact pressure by the finite element procedures. Iteration procedures are attempted by using this method to determine the separated region.

  • PDF

구형 유체 저장 Tank의 Rocking응답 (The Rocking Response of Rectangular Fluid Storage Tank)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.107-114
    • /
    • 1997
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of rocking motion on the seismic response of the 3-D flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation of 3-D rectangular tanks subjected to the translational and rocking motions is obtained by Rayleigh-Ritz method. The dynamic stiffness matrix of the rigid surface foundation resting on the surface of a stratum are calculated by hyperelement method. The seismic responses of a 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation of the structural motion with the dynamic stiffness matrix of the rigid surface foundation.

  • PDF

Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

  • Daouadji, Tahar Hassaine;Benferhat, Rabia;Adim, Belkacem
    • Coupled systems mechanics
    • /
    • 제5권3호
    • /
    • pp.269-283
    • /
    • 2016
  • A two new high-order shear deformation theory for bending analysis is presented for a simply supported, functionally graded plate with porosities resting on an elastic foundation. This porosities may possibly occur inside the functionally graded materials (FGMs) during their fabrication, while material properties varying to a simple power-law distribution along the thickness direction. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theories presented are variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. It is established that the volume fraction of porosity significantly affect the mechanical behavior of thick function ally graded plates. The validity of the two new theories is shown by comparing the present results with other higher-order theories. The influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples.

지반과 구조물 사이의 상호작용을 고려한 농업용 사이로의 해석에 관한 연구(IV) -제 4 보 관행설계법과의 비교 (An Analysis of the Farm Silo Supported by Ground)

  • 조진구;조현영
    • 한국농공학회지
    • /
    • 제30권2호
    • /
    • pp.44-54
    • /
    • 1988
  • This study was carried out to investigate the applicability of the conventional design method for ground supported circular cylindrical shell structures. For this purpose, the ensiled farm silo was adopted as a model structures. Herein, the conventional design method was based on the assumption that such structures are clamped at the bottom edges or the ground pressure is independent of the deflection at the surface. In the present paper, the applicability of above assumption was checked out by comparison with an exact method considering soil-structure interaction. Some results of numerical calculation show us ; When the ground is very hard, for example Winkler's constant k is larger than 100 kg / cm$^2$ / cm, or the bottom plate of structures has a infinitely stiffness, for example the bottom plate thickness is larger than 100 cm, the sectional forces, obtained from the conventional method at any wall of structures resting on an elastic foundation, can used for design purpose. Therefore, if the above condition is satisfied then the conventional assumptions can be justified for the design purpose. In this case, the assumption that such structures are fixed at the lower edges was more realistic than the assumption that the reaction pressure acting on structures is uniformly disributed since the accuracy of results of the analysis by the former assumption was higher than that obtained from the latter assumption. But the sectional forces in the bottom plate resting on ground directly could not be evaluate correctly by the conventional method.

  • PDF

목등 자세와 어깨 관절 벌림 동안 어깨뼈 운동 및 근활성도 간의 상관관계 분석 (Correlation between Cervicothoracic Posture and Scapular Kinematic and Muscle Activity during Shoulder Abduction)

  • 한송이;박승규
    • 대한임상전기생리학회지
    • /
    • 제10권2호
    • /
    • pp.23-29
    • /
    • 2012
  • Purpose : Purpose of this study was to investigate whether cervicothoracic posture was associated with scapula orientation and muscle activity during shoulder abduction. Methods : Cervicothoracic junction angle and thoracic kyphosis angle were measured in health twenty subjects. Then, scapular resting orientation and range of motion (upward/downward rotation, internal/external rotation) and muscle activity (upper trapezius, lower trapezius, serratus anterior) was determined using motion capture system and surface electromyography while subjects performed shoulder abduction. Results : Cervicothoracic junction angle was significantly associated with range of motion of scapular internal/external rotation during shoulder abduction. Thoracic kyphosis angle was significantly associated with scapular resting orientation of upward/downward rotation and average IEMG of lower trapezius. Conclusion : The result of this study shows that poor cervicothoracic posture is relationship with altered scapular kinematics cause of shoulder dysfunction. These findings suggested that cervicothoracic posture may be considered in occupation and exercise including arm elevation over head as well as used as predict factor to estimate shoulder dysfunction.

Metabolic Heat Production and Rectal Temperature of Newborn Calves

  • Mundia, C.M.;Yamamoto, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권3호
    • /
    • pp.304-307
    • /
    • 1997
  • Rectal temperature (Tr), skin surface temperatures (Ts), and heart rate (HR) were measured continuously from birth (day 1) till day 7, while resting heat production (HP) was measured in a chamber on days 1, 3, 5 and 7, in order to study the characteristic variation of Tr in newborn calves by heat balance methods. Despite constant levels of milk being given to the newborn calves each day, daily mean resting HP was lowest on the day of birth, then increased to peak on day 3 and then decreased slightly thereafter. Daily mean HR was higher on days 2, 3 and 4, than on other days. Tr exhibited diurnal rhythms and daily mean Tr was low on day 1, high on day 3, and then decreased slightly after day 3. Daily average mean skin temperature (mTs) was similar on all days. Mean body temperature (Tb) exhibited diurnal rhythms and had a similar range between days, suggesting that heat balance and thermoregulation were carried out effectively on each day. The variation of Tb appeared to be synchronized with that of HP and suggested that newborn calves might use variations in the levels of Tb to facilitate the body's required levels of heart loss.

Functional Connectivity with Regions Related to Emotional Regulation is Altered in Emotional Laborers

  • Seokyeong Min;Tae Hun Cho;Soo Hyun Park;Sanghoon Han
    • 감성과학
    • /
    • 제25권4호
    • /
    • pp.63-76
    • /
    • 2022
  • Emotional labor, characterized by a dysfunctional type of emotional regulation called surface acting, has detrimental psychological consequences on employees, including depression and social anxiety. Because such disorders exhibit psychological characteristics manifested through brain activation, previous studies have succeeded in distinguishing individuals with depression and social anxiety from healthy controls using their functional connectivity characteristics. However, it has not been established whether the functional connectivity characteristics associated with emotional labor are distinguishable. Thus, we obtained resting-state fMRI data from participants in the emotion labor (EL) group and control (CTRL) group, and we subjected their whole-brain functional connectivity matrices to a linear support vector machine classifier. Our analysis revealed that the EL and CTRL groups could be successfully distinguished on the basis of individuals' connectivity patterns, and confidence in the classification was correlated with the scores on the depression and social anxiety scales. These results are expected to provide insight on the neurobiological characteristics of emotional labor and enable the sorting of employees undergoing adverse emotional labor utilizing neurobiological observations.

Scattering of torsional surface waves in a three layered model structure

  • Gupta, Shishir;Pati, Prasenjit;Mandi, Anand;Kundu, Santimoy
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.443-457
    • /
    • 2018
  • In this article, a comparative study has been made to investigate the scattering behaviour of three layered structure model on torsional surface wave. For such model intermediate layer is taken as fiber reinforced composite, resting over a dry sandy Gibson substratum and underlying by different anelastic media. We consider two distinct mediums for topmost layer. In the first case, topmost layer has been taken as fluid saturated homogeneous porous layer, while in the second case the fluid saturated porous layer has been replaced by a transversely isotropic layer. Simple form expression for the secular equation of torsional surface wave has been worked out in both the cases by executing specific boundary conditions, which comprises Whittaker's function and its derivative, for imminent result that have been elaborated asymptotically. Some special cases have been constituted which are in excellent compliance with recorded literatures. For the sake of comparative study, numerical estimation and graphical illustration have been accomplished to identify the effects of the width ratio of the layers, Biot's gravity parameter, sandy parameter, porosity parameter and other heterogeneity parameters corresponding to the layers and half spaces, horizontal compressive and tensile initial stress on the phase velocity of torsional surface wave.

Trunk Muscle Activation during Bridge Exercise with Various Shoulder Supporting Surfaces

  • Son, Ho-hee
    • 대한물리의학회지
    • /
    • 제10권3호
    • /
    • pp.81-86
    • /
    • 2015
  • PURPOSE: Bridge exercises are broadly used to develop trunk co-activation patterns that promote spine stability. This study was to analyze the trunk muscle activity during bridge exercise with various shoulder support surface(stable, sling, Swiss ball). METHODS: The subjects were 20 healthy subjects in their twenties. Subjects were performed bridge exercise on 4 different shoulder support surfaces using stable and labile instruments. 1) Bridge exercise on a stable surface. 2) Bridge exercise with their shoulder on a stable bench. 3) Bridge exercise with their shoulder on a sling. 4) Bridge exercise with their shoulder on a Swiss ball. Rectus abdominis, erector spinae, internal oblique, external oblique muscle activities were measured using electromyography. RESULTS: There were significant differences in RA, EO muscles between performing each of the 4 exercises(p<.05). RA and EO was recorded the highest activity during the bridge exercise with their shoulder on a sling. The lowest activity was recorded during conventional supine bridge on a stable surface. There were no differences found for the EO/RA and IO/RA ratio. The EO/RA and IO/RA ratio was the highest in the bridge exercise with their shoulders resting on a stable bench. CONCLUSION: These findings suggest that change of shoulder support surface during bridge exercise may be useful for enhancing the trunk stability.

Vibration response of saturated sand - foundation system

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Ameri, Abbas F.I.
    • Earthquakes and Structures
    • /
    • 제11권1호
    • /
    • pp.83-107
    • /
    • 2016
  • In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.