• 제목/요약/키워드: Response assessment

검색결과 2,052건 처리시간 0.051초

주파수응답분석기를 이용한 전력용 변압기 열화상태 평가방법 연구 (Research on Assessment Method of Deterioration Condition for Power Transformer Using Sweep Frequency Response Analyzer)

  • 길형준
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.30-35
    • /
    • 2013
  • This paper describes the assessment method of deterioration condition for a power transformer using SFRA. Frequency Response Analysis(FRA) is a method to evaluate the mechanical and geometrical integrity of the core and windings within a power transformer by measuring the electrical transfer functions over a wide frequency range. SFRA is sweep frequency response analyzer for power transformer winding diagnosis. The FRA is a comparative method, that evaluates the transformer condition by comparing the obtained set of FRA results to reference results on the same, or a similar, unit. FRA techniques were widely used and much more sensitive than the traditional and internationally accepted method of impedance measurements, but that work was required on standardization and interpretation. In order to analyze the deterioration condition for power transformer, overvoltage test and mechanical distortion test were carried out. The deterioration condition for power transformer was evaluated by SFRA. It is intended to present the elemental technology of assessment method for power transformer using SFRA.

초등 과학에서 STS 주제에 대한 수행평가자료의 개발 : 6학년 '우리 몸의 생김새' 단원의 호흡관련 주제를 중심으로 (Development of an Elementary Science Performance Assessment Material on STS Theme: Focused on the Respiration Theme in the Unit of 'Our Body')

  • 심주옥;임채성;김은진
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제24권1호
    • /
    • pp.30-42
    • /
    • 2005
  • In this study, we developed an elementary science performance assessment material on STS theme, especially the respiration. The material is constituted with 3 components, which are performance task, students' response format and scoring system, and it also has various objective domains such as applying science knowledge, improving science attitude, using ICT, communicating and reflective thinking. It offers teachers a tool by which they can assess students' abilities on a whole. The task is made with the motivation-evoking content of 'No Smoking'. It is constructed on the activity of writing a letter to his/her father not to smoke. The students' response format is made by problem solving process, and the scoring system is matched with the steps of students' response. The material involves several theoretical backgrounds and the strengths of performance assessment. In addition, due to the detailed students' format and scoring system, it can be used practically in elementary science classroom.

  • PDF

Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA)

  • Moayedifar, Arsham;Nejati, Hamid Reza;Goshtasbi, Kamran;Khosrotash, Mohammad
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.705-714
    • /
    • 2019
  • Seismic assessment of underground structures is one of the challenging problems in engineering design. This is because there are usually many sources of uncertainties in rocks and probable earthquake characteristics. Therefore, for decreasing of the uncertainties, seismic response of underground structures should be evaluated by sufficient number of earthquake records which is scarcely possible in common seismic assessment of underground structures. In the present study, a practical risk-based approach was performed for seismic risk assessment of an unsupported tunnel. For this purpose, Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of a tunnel in south-west railway of Iran and different analyses were conducted using 15 real records of earthquakes which were chosen from the PEER ground motion database. All of the selected records were scaled to different intensity levels (PGA=0.1-1.7 g) and applied to the numerical models. Based on the numerical modeling results, seismic fragility curves of the tunnel under study were derived from the IDA curves. In the next, seismic risk curve of the tunnel were determined by convolving the hazard and fragility curves. On the basis of the tunnel fragility curves, an earthquake with PGA equal to 0.35 g may lead to severe damage or collapse of the tunnel with only 3% probability and the probability of moderate damage to the tunnel is 12%.

A Comparative Study on Brainstem Auditory-Evoked Response between Dogs and Cats

  • Myeong-Yeon Lee;Sorin Choi;Dong-In Jung
    • 한국임상수의학회지
    • /
    • 제40권6호
    • /
    • pp.414-422
    • /
    • 2023
  • Hearing assessment is critical in dogs and cats. Hearing loss in dogs and cats may be congenital or secondary to a central nervous system disorder or ear disease. The brainstem auditory-evoked response (BAER) test has been developed as an electrophysiological test for auditory function assessment. Modern BAER equipment is based on a computerized system. Thus, auditory function assessment can be performed using this objective, safe, and noninvasive method. No study has yet investigated the interspecies differences between BAER test results of dogs and cats. Therefore, the present study aimed to analyze the differences in BAER test results between dogs and cats. The test was conducted on four healthy adult dogs and four healthy adult cats. Regarding latency, lower values were obtained for all waveforms above 50 dB in cats compared to dogs. Regarding amplitude, cats showed higher values than dogs at intensities above 50 dB. Through a comparative analysis in this study, it was concluded that the two species had statistically significant differences. The BAER data of dogs cannot be applied to cats, and vice versa.

Risk Assessment of a High-Speed Railway Bridge System Based on an Improved Response Surface Method

  • Cho, Tae-Jun;Moon, Jae-Woo;Kim, Jong-Tae
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.114-119
    • /
    • 2008
  • A refined three-dimensional finite element interaction model between the high-speed train and railway bride deck has been developed in the present study. Analytical predictions of vertical deflections for a railway bridge are compared with in-situ test results and a good agreement is achieved. Then, input variables employed in the analytical comparisons are selected as random variables for the limit state functions. followed by risk assessment. For this purpose, a linear adaptive weighted response surface method has been developed and applied. A typical railway bridge has been selected and the limit state functions are employed from UIC and Korean specifications in the comparative studies. The results reveal that Korean specifications give significantly risky reliability indices in comparison with UIC specifications. It is thus encouraged from the above that the present linear adaptive weighted response surface method can be an alternative for the fast estimation of nonlinear structural systems.

  • PDF

Assessment of pushover-based method to a building with bidirectional setback

  • Fujii, Kenji
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.421-443
    • /
    • 2016
  • When conducting seismic assessment of an asymmetric building, it is essential to carry out three-dimensional analysis considering all the possible directions of seismic input. For this purpose, the author proposed a simplified procedure is to predict the largest peak seismic response of an asymmetric building subjected to horizontal bidirectional ground motion acting in an arbitrary angle of incidence in previous study. This simplified procedure has been applied to torsionally stiff (TS) asymmetric buildings with regular elevation. However, the suitability of this procedure to estimate the peak response of an asymmetric building with vertical irregularity, such as an asymmetric building with setback, has not been assessed. In this article, the pushover-based simplified procedure is applied to estimate the peak response of asymmetric buildings with bidirectional setback. Nonlinear dynamic (time-history) analysis of two six-storey asymmetric buildings with bidirectional setback and designed according to strong-column weak beam concept is carried out considering various directions of seismic input, and the results compared with those estimated by the proposed method. The largest peak displacement estimated by the simplified method agrees well with the envelope of the dynamic analysis response. The suitability assessment of the simplified procedure to analysed building models is made as well based on pushover analysis results.

응답면 기법에 의한 아치교량 시스템의 붕괴 위험성평가(I): 요소신뢰성 (Risk Assessment for the Failure of an Arch Bridge System Based upon Response Surface Method(I): Component Reliability)

  • 조태준;방명석
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.74-81
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method(RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method.

체계신뢰성 평가와 비교한 응답면기법에 의한 교량시스템의 위험성평가 (Risk Assessment for a Bridge System Based upon Response Surface Method Compared with System Reliability)

  • 조태준;문제우;김종태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.295-300
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significant]y reduced time and efforts compared with the previous permutation method or system reliability analysis method.

  • PDF

가속도계를 이용한 사장교의 지진거동 계측시스템 개발에 대한 연구 (A Study on the Development of a Seismic Response Monitoring System for Cable Bridges by Using Accelerometers)

  • 정성훈;장원석;신수봉
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.283-292
    • /
    • 2021
  • In this study, a structural health monitoring system for cable-stayed bridges is developed. In the system, condition assessment of the structure is performed based on measured records from seismic accelerometers. Response indices are defined to monitor structural safety and serviceability and derived from the measured acceleration data. The derivation process of the indices is structured to follow the transformation from the raw data to the outcome. The process includes noise filtering, baseline correction, numerical integration, and calculation of relative differences. The system is packed as a condition assessment program, which consists of four major processes of the structural health evaluation: (i) format conversion of the raw data, (ii) noise filtering, (iii) generation of response indices, and (iv) condition evaluation. An example set of limit states is presented to evaluate the structural condition of the test-bed and cable-stayed bridge.