• Title/Summary/Keyword: Response System

Search Result 13,086, Processing Time 0.042 seconds

The Seismic Response According to Rise-Span Ratio of the Arch Structure With Seismic Isolation (라이즈-스팬비에 따른 면진 아치구조물의 지진응답 분석)

  • Kim, Su-Geun;Kim, Yu-Seong;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2018
  • In order to reduce the seismic response of the spatial structure, a seismic isolation system with sufficient flexibility is used. The natural period of structure with seismic isolation system got be long to avoid prominent period. In this study, The seismic response of the truss-arch structure, which is modeled in three types according to the rise-span ratio is analyzed on El-centro, Northridge and Artificial Earthquake and compared with the seismic response of the truss-arch structure with lead rubber bearing(LRB). When seismic load is applied to the truss arch with isolation system, the horizontal acceleration response of the truss arch is reduced and vertical seismic response is also reduced. The application of the seismic isolation system is effective in controlling the seismic response.

Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation (고차 주파수응답함수를 이용한 비선형시스템의 매개변수 추정)

  • 이건명
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.223-229
    • /
    • 1997
  • Presented is a method to estimate system parameters of a system with polynomial non-linerities from the measured higher order frequency response functions. Higher order FRFs can be measured on some restricted regions by sinusoidally exciting a non-linear system with various input amplitudes and measuring the response component at the excitation frequency. These higher order FRFs can be expressed in terms of system parameter, and the system parameters can be estimated from the measured FRFs. Since the expressions for higher order FRFs are complicated, system parameters can be estimated from them using an optimization technique. The present method has been applied to a simulated single degree of freedom system with non-linear stiffness and damping, and has estimated accurate system parameters.

  • PDF

Finite Element Vibration/Shock Analysis of Double Stage Elastic Mounting System with Viscoelastically Damped Foundation Structure (유한용소법을 이용한 점탄성 감쇠구조물이 포함된 2단 탄성마운트 시스템의 진동/충격응답 해석)

  • 정우진;류정수;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.508-516
    • /
    • 2000
  • To study the possibility of F.E.M application to vibration and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which has complicated damped sandwich cross-section is analyzed first. And then vibration responses experimental results and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which adopts the above damped structure as intermediate foundation were compared. As a result it is found that F.E.M could be effectively used in analyzing the vibration and shock response of double and multi-stage elastic mounting system with complicated damped foundation structures.

  • PDF

Mode Analysis of Uncoupled System (언커플 시스템의 모우드 분석 연구)

  • Kim, Jong-Do;Yoon, Moon-Chul;Kim, Seon-Jin;Yang, Bo-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.35-41
    • /
    • 2010
  • In this study, a mode analysis of uncoupled system was discussed using FRF. The eigen-mode range of FRF analysis is consistent with conventional FFT in spectrum. Also, the numerical response of second order uncoupled system was obtained using the Runge-Kutta Gill method. The displacement, velocity and acceleration response were calculated after numerical analysis and its response was used for the calculation of FRF for uncoupled system. Using the separated and mixed response of 1st and 2nd mode in example, its FRF was analysed for the prediction of the uncoupled systems and its mode shape was calculated by solving the eigen problem.

Vibration control of the vibration isolation system using the electromagnetic actuator (전자석 액츄에이터에 의한 수동방진 테이블의 제어)

  • Choi, Hyun;Lee, Jung-Youn
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.227-232
    • /
    • 2003
  • As the most precision equipment requiring very strict vibration environment are vulnerable to the surrounding vibration condition, they adapt the passive or active vibration isolation system. When it comes to the passive isolation system, the resonance of the isolation system causes excessive resonance response, and finally results in the degrade the equipment performance. This paper deals with the active control method to control this resonance induced response, and includes the experiment on the active control for controlling the resonance response on the table against the excitation of the same frequency with the natural frequency of the isolation system. The electromagnetic actuator was designed and the control effect was verified by the experiment. The experiment showed that the electromagnetic actuator is effective for controlling the low frequency isolation resonance response of the precision equipment.

  • PDF

Seismic Response Analysis of Steam Turbine-Generator Rotor System(1st Report, In case of rotor-bearing system only) (증기터빈$\cdot$발전기축계의 지진응답해석(제 1 보, 로터$\cdot$베어링시스템만을 고려한 경우))

  • 양보석;김용한
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.554-564
    • /
    • 1999
  • This paper presents the analytical method to evaluate the seismic responses on steam turbine-generator rotor system. Deterministic analytical methods, such as response spectrum approach, modal superposition method and direct integration method, are used to calculate the seismic response. The computer software is also developed based on the methods then can be applied to estimate the seismic safety of turbine-generator rotor system for power plants. Numerical example of a steam turbine-generator rotor system of 1007MW nuclear power plant is presented. The aseismatic performance are checked by comparing maximum seismic deflection at bearing positions with bearing clearance.

  • PDF

Decrease in Stress Response and Related Factors After Transition to Consecutive Day Shift from Day and Night Shift: A Motor Assembly Factory Case (주야2교대제에서 주간연속2교대제로의 전환 후 스트레스반응의 감소와 관련인자: 일개 완성차 제조사의 사례)

  • Song, Hansoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.4
    • /
    • pp.426-435
    • /
    • 2016
  • Objectives: The major objective of this study was to analyze stress response after a change to consecutive day shifts from day and night shifts in a motor assembly factory. Methods: Using a survey conducted by a labor union, we collected data on stress response index(SRI), lifestyle factors, work-family conflict and job stress before and after a shift system change. We analyzed the transition on the SRI among 222 workers. The cut-off point for the SRI was a T-score over 60. Results: The high risk stress response group was 20.3% of the population before the shift system change. After the shift system change it decreased to 11.3%. After the shift system change, social support improved, leisure time became more sufficient, work-family conflict declined, and sleep quality in the night shift week improved. In multivariable linear regression, among workers under 40 years old sleep quality on night shift, leisure time sufficiency, social support and work-family conflict contributed to the improvement of stress response. Among workers over 40, work-family conflict contributed to the improvement of stress response. Conclusions: The change to consecutive day shifts improved stress response and mediated with improved nighttime sleep, decreased work-family conflict, increased leisure time and improved work-family conflict.

New Echo Canceller using Adaptive Cascaded System Identification Algorithm (적응 다단 시스템 식별 알고리듬을 이용한 새로운 반향제거기)

  • Kwon, Oh Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.113-120
    • /
    • 2014
  • In this paper, I present a new echo canceller using the adaptive cascade system identification (CSI) method, which a system response is divided into several responses so that each response is adaptively estimated and combined. Echo cancellation is required for a dual-duplex DSL, in order to allow each individual loop to operate in a full duplex fashion. Echo cancellation was one of the most difficult aspects of DSL design, requiring high linearity and total echo return loss in excess of 70 dB. Especially, for a fickle response, if the response is estimated by an adaptive filter, the filter needs more taps and the performance is decreased. But the response is divided into several responses, the computation complexities are decreased and the performance is increased. For the stage constant n, which represents the number of stages, if the response is not divided (n=1), the computation complexity of multiply is $2N^2$. And if the response is divided into two responses (n=2), the computation complexity of multiply is $2N^2$. Also, if n=3, the computation complexity is ${\frac{2}{3}}N^2$. Therefore, it is known that the computation complexity is decreased as n is increased. Finally, this proposed method is verified through simulation of echo canceller for digital subscriber line (DSL) application.

The difference in knowledge, awareness, and educational demand about disaster medical response-related institutions in Jeollanam-do (전남지역 재난의료대응 유관기관 재난의료대응 지식, 인식 및 교육 요구도 차이 분석)

  • Park, Myeong-Hui;Jung, Eun-Kyung
    • The Korean Journal of Emergency Medical Services
    • /
    • v.26 no.1
    • /
    • pp.21-36
    • /
    • 2022
  • Purpose: This descriptive research study aimed to investigate the knowledge and perception of the natural disaster medical system by relevant disaster medical response teams in Jeonnam region, and provide baseline data for a disaster education program based on analysis of priorities of educational demand. Methods: Online questionnaires were distributed to 200 research participants including paramedics from five fire stations in J province, 22 public health centers, two disaster base hospitals, ERU (Emergency Response Units), and DMAT (Disaster Medical Assistance Team). The questionnaires elicited basic information about respondents, their knowledge and perception on disaster preparation and response, cooperation system, and educational and training needs. Results: The top priority items selected were: other disasters for paramedics, first aid for the rapid response team, and command system for DMAT. Conclusion: Customized education and training programs must be developed to suit each organizational need. Detailed operational guidelines must be established and with them a unified educational curriculum should be put into practice.

Development of HAZMAT Information System (수송안전정보시스템 개발)

  • 안승범;김시곤;김용진;홍우식
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.49-65
    • /
    • 2004
  • Ministry of Environment developed ‘Emergency Response Information System (ERIS)’ in 2001, which is in operation. As a next step, currently National Emergency Response Information System (NERIS) is being developed. The main difference among ERIS and NERIS is to enhance the system in the national level, including transportation of hazardous materials. This paper introduces concepts and methods applied to NERIS, especially HAZMAT, and the information system, operating strategies. Based on GIS and transportation-network data, the best route can be offered using Risk Analysis. Strategies for reporting and first-response information systems are also designed for emergencies in the paper.