• Title/Summary/Keyword: Response Surface Analysis Method

Search Result 889, Processing Time 0.028 seconds

Optimal Design of a Washer using a Response Surface Method (반응표면분석법을 이용한 세탁기의 최적설계)

  • Han, Hyeong-Seok;Kim, Tae-Yeong;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1871-1877
    • /
    • 1999
  • An optimal design method using a response surface method for dynamic characteristics of a washer is presented. The proposed method uses the design of experiment and a computer model is used for the experiment. The value of the cost function is estimated using a computer model for each case of the design variable variation. An orthogonal array is used to obtain best cases to be considered with minimum number of experimentation. Using these experimental values, optimal design is performed using a response surface method. The method used in this paper can be applied to any complicated mechanical systems that can be modelled and analyzed by a computer program. The method is applied to the design of dynamic characteristics of a washer.

Optimal Design of Multi-DOF Deflection Type PM Motor by Response Surface Methodology

  • Li, Zheng;Zhang, Lu;Lun, Qingqing;Jin, Hongbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.965-970
    • /
    • 2015
  • This paper uses response surface methodology as the optimization method of torque of multi-DOF deflection type PM motor. Firstly, the application of Taguchi algorithm selects structural parameters affecting the motor torque largely which simplifies the optimization process greatly. Then, based on the central composite design (CCD), response surface equation numerical model is constructed by the finite element method. With the aid of experiment design and analysis software, the effects of the interaction among factors on the index are analyzed. The results show that the analytical method is efficient and reliable and the experimental results can be predicted by response surface functions.

An efficient response surface method considering the nonlinear trend of the actual limit state

  • Zhao, Weitao;Qiu, Zhiping;Yang, Yi
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.45-58
    • /
    • 2013
  • In structural reliability analysis, the response surface method is a powerful method to evaluate the probability of failure. However, the location of experimental points used to form a response surface function must be selected in a judicious way. It is necessary for the highly nonlinear limit state functions to consider the design point and the nonlinear trend of the limit state, because both of them influence the probability of failure. In this paper, in order to approximate the actual limit state more accurately, experimental points are selected close to the design point and the actual limit state, and consider the nonlinear trend of the limit state. Linear, quadratic and cubic polynomials without mixed terms are utilized to approximate the actual limit state. The direct Monte Carlo simulation on the approximated limit state is carried out to determine the probability of failure. Four examples are given to demonstrate the efficiency and the accuracy of the proposed method for both numerical and implicit limit states.

Robust Design of Mechanisms Using the Response Surfae Analysis (반응표면분석법을 이용한 기구의 강건설계)

  • 한형석;박태원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.743-748
    • /
    • 1996
  • In this study a method for a robust design of mechanisms is proposed. The method used in the experimental anlysis and quqlity engineering is applied for mechanisms design. A mathematical model for a mechanism is estimated by the responese surface analysis and the robust design can be carried out. The method can be applied for mechanisms generally. Furthermore because the method can be used in the design stage using the computer model, improved quality and lower cost of the product is achieved even in the design stage.

  • PDF

OPTIMIZATION OF WELDING PARAMETERS FOR RESISTANCE SPOT WELDING OF TRIP STEEL USING RESPONSE SURFACE METHODOLOGY

  • Park, Hyunsung;Kim, Taehyung;Sehun Rhee
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.366-371
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

Optimization of Welding Parameters for Resistance Spot Welding of Trip Steel Using Response Surface Methodology

  • Park, H.;Kim, T.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.47-50
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

Optimization of Satellite Upper Platform Using the Various Regression Models (다양한 회귀모델을 이용한 인공위성 플랫폼의 최적화)

  • Jeon, Yong-Sung;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1430-1435
    • /
    • 2003
  • Satellite upper platform is optimized by response surface method which has non-gradient, semi-glogal, discrete and fast convergency characteristics. Sampling points are extracted by design of experiments using Central Composite Method and Factorial Design. Also response surface is generated by the various regression functions. Structure analysis is execuated with regard for static and dynamic environment in launching stage. As a result response surface method is superior to other optimization method with respect to optimum value and cost of computation time. Also a confidence is varified in the various regression models.

  • PDF

Design Optimization of Bolted Connection with Wood Laminated Composite Beams Subjected to Distributed Loads (분포하중을 받는 목재 적층복합재 빔의 볼트 체결 최적화 설계)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.292-298
    • /
    • 2017
  • Numerical analysis for various design parameters should be preceded by optimal design of composite materials. Numerous studies have been conducted on the bolting of interconnecting beams. In this study, the response surface method was applied to optimize the design of bolted joints connected by laminated wood composite beams. The response surface was created by combining the FEA code for composite analysis and the algorithm for forming the response surface. Optimization on this response surface was performed with a genetic algorithm to derive the results. The determination of the optimum bolt-hole position for the connection of composite beams is an optimization problem. Tsai-Wu composite failure index, maximum deflection, and simple von Mises stress are set as the objective functions. It has been proved that the design results of the optimized bolt-hole are superior to the design performance of the existing conventional bolt-hole position.

A Study on Designing Mobile Phone Display in Consideration of Elder People's Optical Characteristics and Preferences: Using Conjoint Analysis and Response Surface Method (장년층의 시각적 특성과 선호도를 고려한 휴대폰의 디스플레이 설계에 관한 연구: 컨조인트 분석과 반응표면분석을 활용하여)

  • Lee Sung-Hoon;Shin Yong-Sik;Park Yong-Gil
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • This study is about designing mobile phone display in consideration of elder people's preferences by reason of their optical weakness. The research is closely connected with designing user-friendly interface by considering user characteristics. The criteria for first experiment are font sizes, font types, line spacing and background colors. With the experiment result, relative importance of each attribute and subjective preference are investigated by conjoint analysis. Secondly, an optimal display design for elder people is presented by response surface method on the basis of the result of conjoint analysis, other statistical analyses, and user interviews.

  • PDF

Weight Minimization of a Double-Deck Train Carbody using Response Surface Method (반응표면 모델을 이용한 2층열차 차체의 경량화 설계)

  • Hwang Won-Ju;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.453-458
    • /
    • 2005
  • Weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. It is required to decide 36 thickness of aluminum extruded panels. However, the design variables are two many to tract. moreover, one execution of structural analysis of double-deck carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Response surface model is used to apporximate static response of double-deck carbody. To obtain plausible response surface model, orthogonal array is empolyed as design of experiment(DOE). Design improvement by approximate model-based optimization is described. Accuracy and efficiency of optimization by using response surface model are discussed.

  • PDF