• Title/Summary/Keyword: Response Spectrum

Search Result 1,240, Processing Time 0.024 seconds

Analysis of Characteristics of Vertical Response Spectrum of Ground Motions from Domestic Earthquakes (국내 관측자료를 이용한 수직 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung;Hong, Seung-Min;Park, Ki-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • The vertical response spectra using the observed ground motions from the recent more than 30 macro earthquakes were analysed and then were compared both to the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and to the Korean Standard Design Response Spectrum for general structures and buildings (1997). 176 vertical ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum had strong dependency on epicentral distance. The results also showed that the vertical response spectra revealed much higher values for frequency bands above 5~7 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.2 second (5 Hz) than the Korean Standard Response Spectrum (SD soil condition). These frequency-dependent spectral values could be related to the characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of vertical seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from 19 Earthquakes (국내 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.399-407
    • /
    • 2010
  • The horizontal response spectra using the observed ground motions from the recent more than 19 macro earthquakes were analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). 130 horizontal ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum have strong dependency on epicentral distance. The results also showed that the horizontal response spectra revealed much higher values for frequency bands above 5 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.3 second than the Korean Standard Response Spectrum (SD soil condition). These spectral values dependent on frequency could be related to characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Pushover Analysis for Nonlinear Seismic Response of Reinforced Concrete Mixed Building Structures (철근콘크리트 복합구조물의 비선형 지진응답산정을 위한 Pushover해석)

  • Kang Pyeong-Doo;Jun Dae-Han;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.631-638
    • /
    • 2006
  • This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}$ and/or ductility ratio $\mu$ from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method.

  • PDF

Probabilistic study of the influence of ground motion variables on response spectra

  • Yazdani, Azad;Takada, Tsuyoshi
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.877-893
    • /
    • 2011
  • Response spectra of earthquake ground motions are important in the earthquake-resistant design and reliability analysis of structures. The formulation of the response spectrum in the frequency domain efficiently computes and evaluates the stochastic response spectrum. The frequency information of the excitation can be described using different functional forms. The shapes of the calculated response spectra of the excitation show strong magnitude and site dependency, but weak distance dependency. In this paper, to compare the effect of the earthquake ground motion variables, the contribution of these sources of variability to the response spectrum's uncertainty is calculated by using a stochastic analysis. The analytical results show that earthquake source factors and soil condition variables are the main sources of uncertainty in the response spectra, while path variables, such as distance, anelastic attenuation and upper crust attenuation, have relatively little effect. The presented formulation of dynamic structural response in frequency domain based only on the frequency information of the excitation can provide an important basis for the structural analysis in some location that lacks strong motion records.

Stochastic response spectra for an actively-controlled structure

  • Mochio, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.179-191
    • /
    • 2009
  • A stochastic response spectrum method is proposed for simple evaluation of the structural response of an actively controlled aseismic structure. The response spectrum is constructed assuming a linear structure with an active mass damper (AMD) system, and an earthquake wave model given by the product of a non-stationary envelope function and a stationary Gaussian random process with Kanai-Tajimi power spectral density. The control design is executed using a linear quadratic Gaussian control strategy for an enlarged state space system, and the response amplification factor is given by the combination of the obtained statistical response values and extreme value theory. The response spectrum thus produced can be used for simple dynamical analyses. The response factors obtained by this method for a multi-degree-of-freedom structure are shown to be comparable with those determined by numerical simulations, demonstrating the validity and utility of the proposed technique as a simple design tool. This method is expected to be useful for engineers in the initial design stage for structures with active aseismic control.

Nonlinear Response Analysis of Multi-Degree-of-Freedom Building Structures Using Response Spectrum Method (응답스펙트럼법에 의한 고층 건축물의 탄소성 지진응답해석법)

  • Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.1-9
    • /
    • 1997
  • This paper examined various aspects of a linear and a nonlinear response spectrum method in seismic response analysis of multi-story building structures. The response spectrum method that has been widely used in the analysis of linear structures was proposed different mode superposition method by several ivestigators, and the differences between combinations with an elastic modal analysis reviwed closely. It seems, however, that this method is not used to nonlinear seismic analysis. It is the purpose of this paper to propose an alternative method by means of which a nonlinear MDOF structure with long period may be analysed by an extention of response spectrum method. For nonlinear seismic analysis of high-rise building structures using technique proposed in this study, it is intended to serve primarily as a tool in preliminary designs instead of time history analysis.

  • PDF

Effect of Evaluation Response Spectrum on the Seismic Risk of Structure (평가용 스펙트럼이 구조물의 지진리스크에 미치는 영향)

  • Kim, Min-Kyu;Choi, In-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.39-46
    • /
    • 2009
  • The selection of an evaluation response spectrum can have a significant effect on the seismic fragility evaluation of a structure. A method for modifying the seismic fragility parameters that are calculated based on the design spectrum is described in this study. The modification factor is used to modify the original fragility parameters. The HCLPF (High Confidence of Low Probability of Failure) acceleration levels of the electric system using previous design spectrum and uniform hazard spectrum (UHS) were compared. Finally, seismic risk analyses were performed according to a uniform hazard spectrum. From the results, it was concluded that based on the design spectrum, seismic risk for the electric system might be underestimated.

Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from Fukuoka Earthquakes Series (Fukuoka 연속 지진의 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun Kyoung
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.354-365
    • /
    • 2014
  • The horizontal response spectra using the observed ground motions from 15 Fukuoka earthquake series, including main earthquake (2005/03/20; Mw=6.5), were analysed and then were compared to both the seismic design response spectra (Regulatory Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). 178 horizontal ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum have strong dependency on epicentral distance. The results also showed that the horizontal response spectra revealed higher values for frequency bands at two frequency bands (about 8 - 10 and 16- 20 Hz) than Regulatory Guide 1.60. The results were also compared to the Korean Standard Building Design Spectrum for the 3 different soil types and showed that thehorizontal response spectra revealed higher values for almost all period bands than the Korean Standard Response Spectrum (500 yrs; Return Period; Seismic province 1; SE soil conditions). Through the qualitative improvements and quantitative enhancement of the observed ground motions, the diversity of the observed ground motions should be considered more significantly to improve the certainty of response spectrum.

Development of Impact Factor Response Spectrum based on Frequency Response of Both Ends-Fixed Beam for Application to Continuous Bridges (연속교 적용을 위한 양단고정지지 보의 진동수 기반 충격계수 응답스펙트럼 개발)

  • Roh, Hwasung;Lee, Huseok;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.301-306
    • /
    • 2016
  • In bridge performance assessments, a new load carrying capacity evaluation model of simple bridges was proposed, which is based on the developed simple support impact factor spectrum. In this paper, a conservative assumption that the inner span with the both ends fixed boundary condition is ideal for applying the impact factor response spectrum for continuous bridges. The impact factor response spectrum has been proposed based on this assumption. The response spectrum by comparing the numerical analysis result and actual measurement data verified the applicability. The analysis was loading the moving load of DB-24 in a six-span continuous bridge, which was the same as the actual measurement data, the dynamic response was measured in the fourth span. The frequency of the bridge was obtained by FFT on the acceleration response and the span-frequency of sample bridge was calculated by the frequency. The impact factor of the sample bridge was determined by applying the span-frequency of the bridge to the proposed response spectrum; it was similar to the result of comparing the actual measured impact factor. Therefore, the method using the impact factor response spectrum based on the frequency response of both ends-fixed beam was found to be applicable to an actual continuous bridge.