• 제목/요약/키워드: Response Spectrum

검색결과 1,240건 처리시간 0.028초

Structural seismic response versus epicentral distance and natural period: the case study of Boumerdes (Algeria) 2003 earthquake

  • Dorbani, S.;Badaoui, M.;Benouar, D.
    • Structural Engineering and Mechanics
    • /
    • 제48권3호
    • /
    • pp.333-350
    • /
    • 2013
  • This paper deals with the development of expressions relating structural seismic response parameters to the epicentral distances of an earthquake and the natural period of several reinforced concrete buildings (6, 9 and 12 storey), with three floor plans: symmetric, monosymmetric, and unsymmetric. These structures are subjected to seismic spectrum of accelerations collected during the Boumerdes earthquake (Algeria, May $21^{st}$, 2003, Mw=6.8) at different epicentral distances. The objective of this study is to develop relations between structural responses namely: base shear, storey displacements, interstory drifts and epicentral distance and fundamental period for a given earthquake. The seismic response of the buildings is carried out in both longitudinal transverse and directions by the response spectrum method (modal spectral approach).

구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수 (Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes)

  • 임승현;최인길;전법규;곽신영
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

벌브를 가진 쌍동형 선박의 종동요 응답 스펙트럼 분석 (Analysis on the Pitch Response Spectra of a Catamaran with Bulb)

  • 서광철;이창우;;이경우;김옥석
    • 한국항해항만학회지
    • /
    • 제37권5호
    • /
    • pp.481-486
    • /
    • 2013
  • 본 연구에서는 18미터급 쌍동형 선형의 선수벌브 유무에 따른 운동응답특성을 선형 스트립이론에 기초한 상용코드(Seakeeper)를 이용하여 추정하였다. 계산조건으로는 ITTC 파스펙트럼에 기초한 뷰포트 풍력계급 3 ($\bar{T}=2.98s$, $H_{1/3}$ =0.6m), 4 ($\bar{T}=3.85s$, $H_{1/3}$ =1m) 및 5 ($\bar{T}=5.44$, $H_{1/3}$ =2m)의 파스펙트럼을 산출하였고, 조우각은 선수파, 선수사파 및 횡파를 적용하여 종동요의 선체운동응답스펙트럼을 해석하였다. 선수벌브가 적용된 쌍동선 선형은 선수파와 선수사파에서 최대 20%의 종동요 응답이 감소하는 효과를 나타냈다.

최대 비탄성 변위 응답 예측을 위한 기존 능력스펙트럼법들의 유효성 평가 및 비교 (Evaluation of Capacity Spectrum Methods for Estimating the Peak Inelastic Responses)

  • 김홍진;민경원;이상현;박민규
    • 한국지진공학회논문집
    • /
    • 제8권2호
    • /
    • pp.35-44
    • /
    • 2004
  • 탄성응답스펙트럼을 사용하는 능력스펙트럼법은 비선형 시스템을 등가의 선형시스템으로 치환하여 주어진 지진 하중에 대한 구조물의 최대 비선형 거동을 예측한다. 본 연구의 목적은 이러한 능력스펙트럼법들의 정확성을 검증하고, 예측 특성을 비교하는 것이다. 이를 위해, ATC-40, G lkan, Kowalsky, 그리고 Iwan이 제시한 방법을 이용하여 등가주기와 등가감쇠비를 산정한 후, ATC-40에서 제시한 절차B에 따라 성능점을 산정 하였다. 전반적으로 ATC-40 방범은 구조물의 응답을 과소 평가하여 안전하지 못한 설계결과를 가져 올 수 있으며, G lkan과 Kowalsky의 방법은 과대 평가하는 경향을 가지고 있다. Iwan이 제시한 방법은 ATC-40 방법과 G lkan과 Kowalsky 방법의 중간 값을 예측함으로써, 비교적 정확한 값에 가까운 최대 변위를 산출하였다. 그리고, Kowalsky 방법은 항복 후 강성비에 따라 등가감쇠비를 음수로 산정함으로써 예측 값을 제시하지 못하는 경우가 있음을 확인하였다.

우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석 (A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea)

  • 김정한;김재관;허태민;이진호
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

2016년 경주지진 스펙트럼과 한국표준설계스펙트럼의 비교 (Response Spectra of 2016 Gyeongju Earthquake and Comparison with Korean Standard Design Spectra)

  • 김재관;김정한;이진호;허태민
    • 한국지진공학회논문집
    • /
    • 제21권6호
    • /
    • pp.277-286
    • /
    • 2017
  • On September 12, 2016, Gyeongju earthquake occurred. Its local magnitude was announced to be $M_L=5.8$ by Korea Meteorological Administration (KMA). Ground motion data recorded at KMA, EMC and KERC stations was obtained from their data bases. From the data, horizontal and vertical response spectra, and V/H ratio were calculated. The horizontal spectrum was defined as geometric mean spectrum, GMRotI50. From the statistical analysis of the geometric mean spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. Applying the same procedure, the shape and transition periods of vertical spectrum was obtained. These results were compared with the Korean standard design spectra, which were developed from domestic and overseas intraplate earthquake records. The response spectra of Gyeongju earthquake were found to be almost identical with the newly proposed design spectra. Even the V/H ratios showed good agreement. These results confirmed that the method adopted when developing the standard design spectra were valid and the developed design spectra were reliable.

이동하중의 편측재하에 따른 단순교의 충격계수 및 응답계수 변화 분석 (Investigation of Impact Factor and Response Factor of Simply Supported Bridges due to Eccentric Moving Loads)

  • 홍상현;노화성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.105-113
    • /
    • 2018
  • 교량 내하력 추정을 위해 제안된 모델에서는 응답계수를 충격계수 응답스펙트럼을 활용하여 산정하고 있다. 이때 충격계수 응답스펙트럼은 오일러-베르누이 보 모델을 바탕으로 차량이동하중이 교량의 폭 방향으로 중앙부에 재하 된 조건으로 생성된 결과이다. 따라서 중앙부 차량재하가 아닌 편측 이동하중재하 시 충격계수와 응답계수의 변화를 분석해 볼 필요가 있다. 이를 위해 본 연구에서는 폭이 10m인 2차선 단순교를 대상으로 이동하중해석을 실시하여 최대 충격계수와 응답계수 변화를 분석하였다. 수치해석 결과, 중앙부 재하조건 대비 편측 재하조건 적용 시 최대 정적 및 동적 변위 모두 증가하지만 동적변위 보다 정적변위의 증가량이 더 크기 때문에 충격계수는 오히려 감소하게 된다. 하지만 이러한 차이는 0.5%p 미만으로서 그 영향이 크지 않다. 그리고 응답계수의 경우, 편측 재하조건으로 인해 정적응답계수보다 동적응답계수에서 차이가 더 크게 나타나지만 편측 재하에 따른 오차율의 차이는 0.18%p 정도로 매우 작았다. 즉, 편측 이동하중재하가 응답계수에 미치는 영향은 거의 없으며, 응답계수 산정에 있어서 중앙부 이동하중재하 조건으로 생성된 충격계수 응답스펙트럼을 활용하여도 충분한 예측이 가능하다고 판단된다.

포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석 (Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake)

  • 임승현;최인길
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

마찰형 감쇠를 갖는 구조물의 응답 스펙트럼 (Response Spectra of Structure Installed Frictional Damping System)

  • 박지훈;윤경조;민경원;이상현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.893-897
    • /
    • 2006
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected. by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve fitted design spectrum.

  • PDF

Generation of critical and compatible seismic ground acceleration time histories for high-tech facilities

  • Hong, X.J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.687-707
    • /
    • 2007
  • High-tech facilities engaged in the production of semiconductors and optical microscopes are extremely expensive, which may require time-domain analysis for seismic resistant design in consideration of the most critical directions of seismic ground motions. This paper presents a framework for generating three-dimensional critical seismic ground acceleration time histories compatible with the response spectra specified in seismic design codes. The most critical directions of seismic ground motions associated with the maximum response of a high-tech facility are first identified. A new numerical method is then proposed to derive the power spectrum density functions of ground accelerations which are compatible with the response spectra specified in seismic design codes in critical directions. The ground acceleration time histories for the high-tech facility along the structural axes are generated by applying the spectral representation method to the power spectrum density function matrix and then multiplied by envelope functions to consider nonstationarity of ground motions. The proposed framework is finally applied to a typical three-story high-tech facility, and the numerical results demonstrate the feasibility of the proposed approach.