• Title/Summary/Keyword: Response Function Method

Search Result 1,717, Processing Time 0.032 seconds

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

FUZZY REGRESSION MODEL WITH MONOTONIC RESPONSE FUNCTION

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.973-983
    • /
    • 2018
  • Fuzzy linear regression model has been widely studied with many successful applications but there have been only a few studies on the fuzzy regression model with monotonic response function as a generalization of the linear response function. In this paper, we propose the fuzzy regression model with the monotonic response function and the algorithm to construct the proposed model by using ${\alpha}-level$ set of fuzzy number and the resolution identity theorem. To estimate parameters of the proposed model, the least squares (LS) method and the least absolute deviation (LAD) method have been used in this paper. In addition, to evaluate the performance of the proposed model, two performance measures of goodness of fit are introduced. The numerical examples indicate that the fuzzy regression model with the monotonic response function is preferable to the fuzzy linear regression model when the fuzzy data represent the non-linear pattern.

Structural Dynamic Modification Using substructure Response Function Sensitivity Method(SRFSM) (부분구조응답함수감소법을 이용한 동적구조변경)

  • Ji, Tae-Han;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3782-3791
    • /
    • 1996
  • A great deal of effert has been invested in upgrading the performance and the efficiency of mechanical structures. Using experimental modal analysis(EMA) or finite element analysis(FEA) data of mechanical structures, this performance and efficiency can be effectively evaluated. In order to analyze complex structures such as automobiles and aircraft, for the sake of computing efficiency, the dynamic substructuring techniques that allow to predict the dynamic behavior of a structure based on that of the composing structures, are widely used. By llinking a modal model obtained from EMA and an analytical model obtained from FEA, the best conditioned structures can be desinged. In this paper, a new algorithm for structural dynamic modification-SRFSM (substructure response function sensitivity method) is proposed by linking frequency responce function synthesis and response function sensitivity. A mehtod to obtain response function sensitivity using direct derivative of mechanical impedance, is also used.

Using the Maximin Criterion in Process Capability Function Approach to Multiple Response Surface Optimization (다중반응표면최적화를 위한 공정능력함수법에서 최소치최대화 기준의 활용에 관한 연구)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.20 no.3
    • /
    • pp.39-47
    • /
    • 2019
  • Response surface methodology (RSM) is a group of statistical modeling and optimization methods to improve the quality of design systematically in the quality engineering field. Its final goal is to identify the optimal setting of input variables optimizing a response. RSM is a kind of knowledge management tool since it studies a manufacturing or service process and extracts an important knowledge about it. In a real problem of RSM, it is a quite frequent situation that considers multiple responses simultaneously. To date, many approaches are proposed for solving (i.e., optimizing) a multi-response problem: process capability function approach, desirability function approach, loss function approach, and so on. The process capability function approach first estimates the mean and standard deviation models of each response. Then, it derives an individual process capability function for each response. The overall process capability function is obtained by aggregating the individual process capability function. The optimal setting is given by maximizing the overall process capability function. The existing process capability function methods usually use the arithmetic mean or geometric mean as an aggregation operator. However, these operators do not guarantee the Pareto optimality of their solution. Moreover, they may bring out an unacceptable result in terms of individual process capability function values. In this paper, we propose a maximin-based process capability function method which uses a maximin criterion as an aggregation operator. The proposed method is illustrated through a well-known multiresponse problem.

Aircraft Wing Spar Cross-section Area Optimization with Response Surface Method (반응면 기법을 이용한 항공기 날개 스파 단면적의 최적화 연구)

  • Park, Chan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.109-116
    • /
    • 2002
  • The solution of the aircraft wing spar cross-section area optimization problem is obtained by the response surface method. The object function of the problem is wing total weight, design variables are spar cross-section areas, constraints are the conditions that the stresses at the each spar is less than the allowable stress. D-Optimal condition is utilized to obtain the experimental points to construct the response surfaces. D-Optimal experimental points are obtained by the commercial software "Deign-Expert". Response values for the object function and constraints for each experimental point are calculated by the NASTRAN. Response surfaces for object function and constraints are approximated from the response values by the least square method. The optimization solution is obtained by the DOT for the response surfaces of object function and constraints. The optimization results obtained from the response surface are compared with the results obtained by the NASTRAN SOL200.

Capabilities of stochastic response surface method and response surface method in reliability analysis

  • Jiang, Shui-Hua;Li, Dian-Qing;Zhou, Chuang-Bing;Zhang, Li-Min
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.111-128
    • /
    • 2014
  • The stochastic response surface method (SRSM) and the response surface method (RSM) are often used for structural reliability analysis, especially for reliability problems with implicit performance functions. This paper aims to compare these two methods in terms of fitting the performance function, accuracy and efficiency in estimating probability of failure as well as statistical moments of system output response. The computational procedures of two response surface methods are briefly introduced first. Then their capabilities are demonstrated and compared in detail through two examples. The results indicate that the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the performance function in the vicinity of the design point, while the statistical moments of system output response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion both in the entire physical and in the independent standard normal spaces. However, it can be only well fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the probability of failure and statistical moments of system output response can be accurately estimated by the SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy.

Approximation of Pulse Transfer Function of Impulse Response Data (임펄스응답 데이타의 펄스전달함수의 근사)

  • Lee, Dong-Cheol;Bae, Jong-Il;Chung, Hyeng-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.683-685
    • /
    • 1999
  • As a method of obtaining pulse transfer function. transfer function of discrete-time from input-output data, there are method of obtaining unknown parameter of pulse transfer function from estimated impulse response before(1-3). There is no need to approximate to several meanings because of not being established algebraical relations between impulse response for estimation error and parameter of transfer function exactly. In this paper, I inquire the method[4] of obtaining the optimal pulse transfer function as a meaning of Hankel norm approximation from impulse response data and examine estimated property as computer simulation from this method.

  • PDF

Leak Detection of Circular Piping Systems by Using Unit Impulse Response Function Analysis (단위 충격 응답함수를 이용한 원형관 시스템의 주출감지 연구)

  • 전오성;윤병옥;김창호
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.337-343
    • /
    • 1994
  • A method of the leak detection from the pipe system by using accelerometer is proposed. The signal detected from accelerometer is proved experimentally to be a dispersive wave. Based on the experiments, a method using the narrow band pass filter and the unit impulse response function is analyzed. The method uses the characteristics of the unit impulse response function, that the function is available evenin the narrow band signal because, unlike the cross correlation, it is normalized by the auto spectrum. The accelerometer is quite easier to use than the hydrophone in adapting to the pipe system.

  • PDF

A new high-order response surface method for structural reliability analysis

  • Li, Hong-Shuang;Lu, Zhen-Zhou;Qiao, Hong-Wei
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.779-799
    • /
    • 2010
  • In order to consider high-order effects on the actual limit state function, a new response surface method is proposed for structural reliability analysis by the use of high-order approximation concept in this study. Hermite polynomials are used to determine the highest orders of input random variables, and the sampling points for the determination of highest orders are located on Gaussian points of Gauss-Hermite integration. The cross terms between two random variables, only in case that their corresponding percent contributions to the total variation of limit state function are significant, will be added to the response surface function to improve the approximation accuracy. As a result, significant reduction in computational cost is achieved with this strategy. Due to the addition of cross terms, the additional sampling points, laid on two-dimensional Gaussian points off axis on the plane of two significant variables, are required to determine the coefficients of the approximated limit state function. All available sampling points are employed to construct the final response surface function. Then, Monte Carlo Simulation is carried out on the final approximation response surface function to estimate the failure probability. Due to the use of high order polynomial, the proposed method is more accurate than the traditional second-order or linear response surface method. It also provides much more efficient solutions than the available high-order response surface method with less loss in accuracy. The efficiency and the accuracy of the proposed method compared with those of various response surface methods available are illustrated by five numerical examples.

Improved Response Surface Method Using Modified Selection Technique of Sampling Points (개선된 평가점 선정기법을 이용한 응답면기법)

  • 김상효;나성원;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.248-255
    • /
    • 1993
  • Recently, due to the increasing attention to the structural safety under uncertain environments, many researches on the structural reliability analysis have been peformed. Some useful methods are available to evaluate performance reliability of structures with explicit limit states. However, for large structures, in which structural behaviors can be analyzed with finite element models and the limit states are only expressed implicitly, Monte-Carlo simulation method has been mainly used. However, Monte-Carlo simulation method spends too much computational time on repetitive structural analysis. Many alternative methods are suggested to reduce the computational work required in Monte-Carlo simulation. Response surface method is widely used to improve the efficiency of structural reliability analysis. Response surface method is based on the concept of approximating simple polynomial function of basic random variables for the limit state which is not easily expressed in explicit forms of design random variables. The response surface method has simple algorithm. However, the accuracy of results highly depends on how properly the stochastic characteristics of the original limit state has been represented by approximated function, In this study, an improved response surface method is proposed in which the sampling points for creating response surface are modified to represent the failure surface more adequately and the combined use of a linear response surface function and Rackwitz-Fiessler method has been employed. The method is found to be more effective and efficient than previous response surface methods. In addition more consistent convergence is achieved, Accuracy of the proposed method has been investigated through example.

  • PDF