• Title/Summary/Keyword: Respond rudder angle

Search Result 4, Processing Time 0.02 seconds

A Study on the Ship's Speed Control and Ship Handling at Myeongnayang Waterway (명량수도 해역에서 항해속력 규제와 선박운용에 관한 연구)

  • Kim, Deug-Bong;Jeong, Jae-Yong;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This study provided safe sailing speed and appropriate passing time to areas of known strong current water to prevent marine accident of the ships. To the interpretation of these data which target Myeongnyang waterway, AIS data of the ship was collected from $12^{th}$ July to $15^{th}$ July 2010 and site environment was investigated on $4^{th}$ September 2010. On the basis of the collected data, the 'Minimum Navigation Speed' and 'Optimum Navigation Speed' were calculated. It has also considered the 'Spare control force' or allowance and the 'Respond Rudder Angle' for each tidal current speed. Additionally, it suggested the safe passing time to strong current area by analyzing tidal level and tidal current speed. The conclusion of the research are as follows : (1) If the flow rate is greater than 4.4 kn, it is difficult for the model ship to control herself by her own steering power and to cope with tidal current pressure force and yaw moment caused by the tidal current.. (2) The minimum navigation speed should be over 2.3 times the tidal current and the optimum navigation speed should be over 4.0 times the tidal current. (3) When spring tide, the optimum passing time at Myeongnyang waterway is between 30 minutes to 1 hour before the time of high/low water, and at 5 hours after high/low water, passing of ships should be avoided because it is time when the flow rate is over 4 kn.

Intelligent Ship s Steering Gear Control System Using Linguistic Instruction (언어지시에 의한 지능형 조타기 제어 시스템)

  • Park, Gyei-Kark;Seo, Ki-Yeol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.417-423
    • /
    • 2002
  • In this paper, we propose intelligent steering control system that apply LIBL(Linguistic Instruction Based Learning) method to steering system of ship and take the place of process that linguistic instruction such as officer s steering instruction is achieved via ableman. We embody ableman s suitable steering manufacturing model using fuzzy inference rule by specific method of study, and apply LIBL method to present suitable meaning element and evaluation rule to steering system of ship, embody intelligent steering gear control system that respond more efficiently on officer s linguistic instruction. We presented evaluation rule to constructed steering manufacturing model based on ableman s experience, and propose rudder angle for steering system, compass bearing arrival time, meaning element of stationary state, and correct ableman manufacturing model rule using fuzzy inference. Also, we apply LIBL method to ship control simulator and confirmed the effectiveness.

Intelligent Ship s Steering Gear Control System Using Linguistic Instruction (언어지시에 의한 지능형 조타기 제어 시스템)

  • 박계각;서기열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.93-97
    • /
    • 2002
  • In this paper, we propose intelligent steering control system that apply LIBL(Linguistic Instruction Based Learning) method to steering system of ship and take the place of process that linguistic instruction such as officer's steering instruction is achieved via ableman. We embody ableman's suitable steering manufacturing model using fuzzy inference rule by specific method of study, and apply LIBL method to present suitable meaning element and evaluation rule to steering system of ship, embody intelligent steering gear control system that respond more efficiently on officer's linguistic instruction. We presented evaluation rule to constructed steering manufacturing model based on ableman's experience, and propose rudder angle for steering system, compass bearing arrival time, meaning element of stationary state, and correct ableman manufacturing model rule using fuzzy inference. Also, we apply LIBL method to ship control simulator and confirmed the effectiveness.

Ship s Maneuvering and Winch Control System with Voice Instruction Based Learning (음성지시에 의한 선박 조종 및 윈치 제어 시스템)

  • Seo, Ki-Yeol;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.517-523
    • /
    • 2002
  • In this paper, we propose system that apply VIBL method to add speech recognition to LIBL method based on human s studying method to use natural language to steering system of ship, MERCS and winch appliances and use VIBL method to alternate process that linguistic instruction such as officer s steering instruction is achieved via ableman and control steering gear, MERCS and winch appliances. By specific method of study, ableman s suitable steering manufacturing model embodies intelligent steering gear controlling system that embody and language direction base studying method to present proper meaning element and evaluation rule to steering system of ship apply and respond more efficiently on voice instruction of commander using fuzzy inference rule. Also we embody system that recognize voice direction of commander and control MERCS and winch appliances. We embodied steering manufacturing model based on ableman s experience and presented rudder angle for intelligent steering system, compass bearing arrival time, evaluation rule to propose meaning element of stationary state and correct steerman manufacturing model rule using technique to recognize voice instruction of commander and change to text and fuzzy inference. Also we apply VIBL method to speech recognition ship control simulator and confirmed the effectiveness.