• Title/Summary/Keyword: Respond Surface Method

Search Result 22, Processing Time 0.035 seconds

The Selection on the Optimal Condition of Si-wafer final Polishing by Combined Taguchi Method and Respond Surface Method (실험계획법을 적용한 웨이퍼 폴리싱의 최적 조건 선정에 관한 연구)

  • Won, Jong-Koo;Lee, Jung-Hun;Lee, Jung-Taik;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The final polishing process is based on slurry, pad, conditioner, equipment. Therefore, the concept of wafer final polishing is also necessary for repeatability of results between polished wafers. In this study, the machining conditions have a pressure, table speed, machining time and slurry ratio. This research investigated the surface characteristics that apply variable machining conditions and response surface methodology was used to obtain more flexible and optimumal condition base on Taguchi method. On the base of estimated response surface curvature from the equation and results of Taguchi method, combined design of experiment was considered to lead to optimumal condition. Finally, polished wafer was obtained mirror like surface.

A Study on the Optimum Design of Independent Suspension Final Reduction Gear (특수차량 독립현가형 종감속기의 최적설계에 대한 연구)

  • Jo, Young-Jik;Jeon, Eeon-chan;Kang, Jung-ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.135-141
    • /
    • 2008
  • Independent suspension axle and final reduction gear for special-purpose vehicles such as a armored vehicles are almost imported in Germany etc. so, developing them is necessary to save cost. In severe condition (open fields, water surface driving, obstacle pass), special-purpose vehicles must work well. Drop box, axle and final reduction gear performed static analysis. We know that is possible weight reduction. The purpose of this paper is to find out the optimal shape of final reduction gear's case by means of response surface methodology. The response surface method is the statistical method which can be applied to the non-sensitivity based optimization. The response surface which is constructed by the least square method contains only the polynomial terms so that the global maximum and minimum points are easily obtained.

  • PDF

Control of Biped Locomotion on A Slippery Surface (미끄러운 노면에 적응하는 2족 보행 로봇의 제어)

  • 권오홍;박종현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.41-41
    • /
    • 2000
  • biped robots are expected to robustly traverse terrain with various unknown surfaces. The robot will occasionally encounter the unexpected events in made-for human environments. The slipping is a very real and serious problem in the unexpected events. The robot system must respond to the unexpected slipping after it has occurred and before control is lost. This paper proposes a reflex control method for biped robots to recover from slipage. Computer simulations with the 6-DOF environment model which consists of nonlinear dampers, nonlinear springs, and linear springs, show that the proposed method is effective in preventing fall-down due to slippage.

  • PDF

The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro

  • Eskandari, Fatemeh;Goharrizi, Kamran Goshtasbi;Hooti, Amir
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.769-774
    • /
    • 2018
  • The growth of cities requires the construction of new tunnels close to the existing ones. Prediction and control of ground movement around the tunnel are important especially in urban area. The ground respond due to EPB (Earth Pressure Balance) pressure are investigated using the finite element method by ABAQUS in intersection of the triplet tunnels (Line 2, 3 and 4) of Mashhad Urban Railway in Iran. Special attention is paid to the effect of EPB pressure on the tunnel face displacement. The results of the analysis show that in EPB tunneling, surface settlement and face displacement is related to EPB pressure. Moreover, it is found that tunnel construction sequence is a great effect in face displacement value. For this study, this value in Line 4 where is excavated after line 3, is smaller than that line. In addition, the trend of the displacement curves are changed with the depth for all lines where is located in above and below, close to and above the centerline tunnel face for Line 2, 3 and 4, respectively. It is concluded that: (i) the surface settlement decreases with increasing EPB pressure on the tunnel face; (ii) at a constant EPB pressure, the tunnel face displacement values increase with depth. In addition, this is depended on the tunneling sequence; (iii) the trend of the displacement curves change with the depth.

A Formation Control of Swarm Unmanned Surface Vehicles Using Potential Field Considering Relative Velocity (상대속도를 고려한 포텐셜 필드 기반 군집 무인수상선의 대형 제어)

  • Seungdae Baek;Minseung Kim;Joohyun Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.170-184
    • /
    • 2024
  • With the advancement of autonomous navigation technology in maritime domain, there is an active research on swarming Unmanned Surface Vehicles (USVs) that can fulfill missions with low cost and high efficiency. In this study, we propose a formation control algorithm that maintains a certain shape when multiple unmanned surface vehicles operate in a swarm. In the case of swarming, individual USVs need to be able to accurately follow the target state and avoid collisions with obstacles or other vessels in the swarm. In order to generate guidance commands for swarm formation control, the potential field method has been a major focus of swarm control research, but the method using the potential field only uses the position information of obstacles or other ships, so it cannot effectively respond to moving targets and obstacles. In situations such as the formation change of a swarm of ships, the formation control is performed in a dense environment, so the position and velocity information of the target and nearby obstacles must be considered to effectively change the formation. In order to overcome these limitations, this paper applies a method that considers relative velocity to the potential field-based guidance law to improve target following and collision avoidance performance. Considering the relative velocity of the moving target, the potential field for nearby obstacles is newly defined by utilizing the concept of Velocity Obstacle (VO), and the effectiveness and efficiency of the proposed method is verified through swarm control simulation, and swarm control experiments using a small scaled unmanned surface vehicle platform.

A Study on Data Acquisition of IoT Devices Intrusion (사물인터넷 기기 침해사고 데이터 수집 방안 연구)

  • Jong-bum Lee;Ieck-Chae Euom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.537-547
    • /
    • 2023
  • As Internet of Things (IoT) technology evolves, IoT devices are being utilized in a variety of fields. However, it has become a new surface of cyber attacks and is affecting industries that did not previously consider cyber breaches. After a intrusion occurs, post-processing and damage spread prevention are important, but it is difficult to respond due to the lackof standards and guidelines. Therefore, in order to respond to such incidents, this paper establishes an incident data collection procedure and presents the data that can be collected to improve the intrusion data acquisition method for general IoT devices. In addition, we proved the efficiency and feasibility of the data collection procedure through experiments.

Comparison of Wear Amount of Surface Coating Layers on Dies for Cold-Stamped Products with MART1470 (MART1470 판재 냉간 프레스 성형용 금형 코팅층의 마모량 비교)

  • Son, M.K.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2022
  • In this paper, wear characteristics of PVD coatings were compared on the die surface for cold stamping of MART1470 steel sheet with the finite element analysis and the pin-on-disc wear test. Three types of PVD coatings (CrN, TiAlCrN, and MoS2TiCr(W)N) were considered for the tool surface made of STD11 material. The stamping process of an auto-body part was analyzed with the finite element method. Ranges of process variables for the wear test such as contact pressure, relative speed, and sliding distance were predicted from analysis results. In order to quantitatively analyze wear characteristics of each coating, the amount of wear was measured and compared according to process variables with the pin-on-disc wear test. The influence of each process variable was investigated and the wear characteristics of the three coating layers were quantitatively compared. It was confirmed that the wear characteristics of MoS2TiCr(W)N coating were better than those of CrN and TiAlCrN. It was noted that the proposed prediction approach could predict and respond to the wear phenomenon occurring in the stamping process.

A Study on the Method of Equilibrium-Pressure Prediction from Transient Data (과도상태의 압력데이터로부터 평형상태 압력 예측방법 연구)

  • Lee, Jong-Kook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.19-28
    • /
    • 2004
  • This study is concerned with the method of equilibrium-pressure prediction from transient data. Pressure measurement system consisted of pressure sensor and pressure tube. The surface orifice where pressure is measured is connected to a pressure sensor by a tube. In case of high orifice pressure, the pressure sensor responds rapidly to the orifice pressure. But when the orifice pressure is low the pressure sensor does not respond rapidly to the orifice pressure and time lag occurs seriously. Various test conditions are applied to investigate the time lag and to assess the methods of equilibrium-pressure prediction. The test time of the low-pressure measurement can be reduced by the method of equilibrium-pressure prediction of the present study.

Characterization of Nanoscale Electroactive Polymers via Piezoelectric Force Microscopy

  • Lee, Su-Bong;Ji, Seungmuk;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.232.2-232.2
    • /
    • 2015
  • Piezoelectric force microscopy (PFM) is a powerful method to characterize inversed piezoelectric effects directly using conductive atomic force microscopy (AFM) tips. Piezoelectric domains respond to an applied AC voltage with a characteristic strain via a contact between the tip and the surface of piezoelectric material. Electroactive piezoelectric polymers are widely investigated due to their advantages such as flexibility, light weight, and microactuation enabling various device features. Although piezoelectric polymers are promising materials for wide applications, they have the primary issue that the piezoelectric coefficient is much lower than that of piezoelectric ceramics. Researchers are studying widely to enhance the piezoelectric coefficient of the materials including nanoscale fabrication and copolymerization with some materials. In this report, nanoscale electroactive polymers are prepared by the electrospinning method that provides advantages of direct poling, scalability, and easy control. The main parameters of the electrospinning process such as distance, bias voltage, viscosity of the solution, and elasticity affects the piezoelectric coefficient and the nanoscale structures which are related to the phase of piezoelectric polymers. The characterization of such electroactive polymers are conducted using piezoelectric force microscopy (PFM). Their morphologies are characterized by field emission-scanning electron microscope (FE-SEM) and the crystallinity of the polymer is determined by X-ray diffractometer.

  • PDF

Study about the Standard of Anti-icing System Based on Geography and Geometric Designs (기하구조 및 지형적 요소를 고려한 융설시스템 설치 기준 정립에 관한 연구)

  • Lee, Dong-Hyun;Jeong, Won-Seok;Kim, Ji-Won;Ko, Seok-Beom
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • Anti-icing system can immediately respond when snowing is expected or the snow comes down on the road surface. It has been recognized that the system can reduce traffic accidents and congestion by quickly removing the frozen road surface area. However, it is very difficult to implement this system due to the expensive equipment installation and operation cost, Recently, there was a developed program for predicting the freezing area using three-dimensional model and tracking the sun path. But, there is no objective analysis method and all developed approaches are different so that the general standard of anti-icing system is needed. In this study, we proposed the decision criteria for determining application priorities of the anti-icing system based on weather and road conditions, i.e., geometric and topographic conditions. Regional climate survey, topographical analysis, and dynamic vehicle simulation considered road geometry and skid resistance was conducted to standardize the installation method of anti-icing system.