• Title/Summary/Keyword: Respiratory cycle

Search Result 172, Processing Time 0.023 seconds

Activation of NF-${\kappa}B$ in Lung Cancer Cell Lines in Basal and TNF-${\alpha}$ Stimulated States (폐암 세포에서 기저 상태와 TNF-${\alpha}$ 자극 시 NF-${\kappa}B$의 활성화)

  • HwangBo, Bin;Lee, Seung-Hee;Lee, Choon-Taek;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : The NF-${\kappa}B$ transcription factors control various biological processes including the immune response, acute phase reaction and cell cycle regulation. NF-${\kappa}B$ complexes are retained in the cytoplasm in the basal state and various stimuli cause a translocation of the NF-${\kappa}B$ complexes into the nucleus where they bind to the ${\kappa}B$ elements and regulate the transcription of the target genes. Recent reports also suggest that NF-${\kappa}B$ proteins are involved in oncogenesis, tumor growth and metastasis. High expression of NF-${\kappa}B$ expression was reported in many cancer cell lines and tissues. The constitutive activation of NF-${\kappa}B$ was also reported in several cancer cell lines supporting its role in cancer development and survival. The anti-apoptotic action of NF-${\kappa}B$ is important for cancer survival. NF-${\kappa}B$ also controls the expression of several proteins that are important for cellular adhesion (ICAM-1, VCAM-1) suggesting a role in cancer metastasis. In lung cancer, high expression levels of the NF-${\kappa}B$ subunit p50 and c-Rel were reported. In fact, high expression does not mean a high activity, and the activation pattern of NF-${\kappa}B$ in lung cancer has not been reported. Materials and Methods : In this study, the NF-${\kappa}B$ nuclear binding activity in the basal and TNF-${\alpha}$ stimulated states were exmined in various lung cancer cell lines and compared with the normal bronchial epithelial cell line. Twelve lung cancer cell lines including the non-small cell and small cell lung cancer cell lines (A549, NCI-H358, NCI-H441, NCI-H552, NCI-H2009, NCI-H460, NCI-H1229, NCI-H1703, NCI-H157, NCI-H187, NCI-H417, NCI-H526) and BEAS-2B bronchial epithelial cell line were used. To evaluate the NF-${\kappa}B$ expression and DNA binding activity, western blot analysis and an electrophoretic mobility shift assay with the nuclear protein extracts. Results : The basal expressions of the p65 and p50 subunits were observed in the BEAS-2B cell line and all lung cancer cell lines except for NCI-H358 and NCI-H460. The expression levels of p65 and p50 were increased 30 minutes after stimulation with TNF-${\alpha}$ in BEAS-2B and in 10 lung cancer cell lines. In the NCI-H358 and NCI-H460 cell lines, p65 expression was not observed in the basal and stimulated states and the two p50 related protein levels were higher after stimulation with TNF-${\alpha}$ These new proteins were smaller than p50 and are thought to be variants of p50. In the basal state, NF-${\kappa}B$ was nearly activated in the BEAS-2B and all lung cancer cell lines. The DNA binding activity of the NF-${\kappa}B$ complexes was markedly higher after stimulation with TNF-${\alpha}$ In the BEAS-2B and all lung cancer cell line except for NCI-H358 and NCI-H460, the activated NF-${\kappa}B$ complex was a p65/p50 heterodimer. In the NCI-H358 and NCI-H460 lung cancer cell lines, the NF-${\kappa}B$ complex was variant of a p50/p50 homodimer. Conclusion : The NF-${\kappa}B$ activation pattern in the lung cancer cell lines and the normal bronchial epithelial cell lines was similar except for the activation of a variant of the p50/p50 homodimer in some lung cancer cell linse.

Pre-operative Concurrent Chemoradiotherapy for Stage IlIA (N2) Non-Small Cell Lung Cancer (N2 병기 비소세포 폐암의 수술 전 동시화학방사선요법)

  • Lee, Kyu-Chan;Ahn, Yong-Chan;Park, Keunchil;Kim, Kwhan-Mien;Kim, Jhin-Gook;Shim, Young-Mog;Lim, Do-Hoon;Kim, Moon-Kyung;Shin, Kyung-Hwan;Kim, Dae-Yong;Huh, Seung-Jae;Rhee, Chong-Heon;Lee, Kyung-Soo
    • Radiation Oncology Journal
    • /
    • v.17 no.2
    • /
    • pp.100-107
    • /
    • 1999
  • Purpose: This is to evaluate the acute complication, resection rate, and tumor down-staging after pre-operative concurrent chemoradiotherapy for stage IIIA (N2) non-small cell lung cancer. Materials and Methods Fifteen patients with non-small cell lung cancer were enrolled in this study from May 1997 to June 1998 in Samsung Medical Center. The median age of the patients was 61 (range, 45~67) years and male to female ratio was 12:3. Pathologic types were squamous cell carcinoma (11) and adenocarcinoma (4). Pre-operative clinical tumor stages were cT1 in 2 patients, cT2 in T2, and cT3 in 1 and all were N2. Ten patients were proved to be N2 with mediastinoscopic biopsy and five had clinically evident mediastinal Iymph node metastases on the chest CT scans. Pre-operative radiation therapy field included the primary tumor, the ipsilateral hilum, and the mediastinum. Total radiation dose was 45 Gy over 5 weeks with daily dose of 1.8 Gy. Pre-operative concurrent chemotherapy consisted of two cycles of intravenous cis-Platin (100 mg/m$^{2}$) on day 1 and oral Etoposide (50 mg/m$^{2}$/day) on days 1 through 14 with 4 weeks' interval. Surgery was followed after the pre-operative re-evaluation including chest CT scan in 3 weeks of the completion of the concurrent chemoradiotherapy if there was no evidence of disease progression. Results : Full dose radiation therapy was administered to all the 15 patients. Planned two cycles of chemotherapy was completed in 11 patients and one cycle was given to four. One treatment related death of acute respiratory distress syndrome occurred In 15 days of surgery. Hospital admission was required in three patients including one with radiation pneumonitis and two with neutropenic fever. Hematologic complications and other acute complications including esophagitis were tolerable. Resection rate was 92.3% (12/l3) in 13 patients excluding two patients who refused surgery. Pleural seeding was found in one patient after thoracotomy and tumor resection was not feasible. Post-operative tumor stagings were pT0 in 3 patients, pTl in 6, and pT2 in 3. Lymph node status findings were pN0 in 8 patients, pN1 in 1, and pN2 in 3. Pathologic tumor down-staging was 61.5% (8/13) including complete response in three patients ($23.7%). Tumor stage was unchanged in four patients (30.8%) and progression was in one (7.7%). Conclusions : Pre-operative concurrent chemoradiotherapy for Stage IIIA (N2) non-small cell lung cancer demonstrated satisfactory results with no increased severe acute complications. This treatment shceme deserves more patinet accrual with long-term follow-up.

  • PDF