• Title/Summary/Keyword: Respiratory challenges

Search Result 41, Processing Time 0.023 seconds

Preparedness of Siddha system of medicine in practitioner perspective during a pandemic outbreak with special reference to COVID-19

  • Rajalakshmi, S.;Samraj, K.;Sathiyarajeswaran, P.;Kanagavalli, K.
    • CELLMED
    • /
    • v.10 no.4
    • /
    • pp.29.1-29.6
    • /
    • 2020
  • COVID-19 (Corona Virus Disease-2019) is an infectious respiratory disease caused by the most recently discovered coronavirus, SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona virus-2). This new viral disease was unknown before the outbreak began in Wuhan, China, in December 2019. As of November 16th 2020, it affects about 54.3 million populations, death troll increased to 1.32 million cases in worldwide. Whereas in India 8.85 cases are infected with COVID-19, of which 1, 30, 112 cases were died. Till now there has been no specific anti-virus drug or vaccines are available for the treatment of this disease, the supportive care and non-specific treatment to the symptoms of the patient are the only options in Biomedicine, the entire world turns its attention towards alternative medicine or Traditional medicine. Siddha medicine is one of the primordial systems of medicine practiced in the southern part of India, it dealt a lot about pandemic, and its management. This review provides an insight into Pandemic in Siddha system and its management in both ancient history and modern history, National and state level Government policies related to current pandemic, World Health Organization (WHO) guidelines on usage of unproven drug during infectious disease outbreak, Preparedness of Siddha system during a pandemic outbreak Challenges and Recommendations.

Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome

  • Seo Won Shin;Ik Hyun Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.

Host Blood Transcriptional Signatures as Candidate Biomarkers for Predicting Progression to Active Tuberculosis

  • Chang Ho Kim;Gahye Choi;Jaehee Lee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.2
    • /
    • pp.94-101
    • /
    • 2023
  • A recent understanding of the dynamic continuous spectrum of Mycobacterium tuberculosis infection has led to the recognition of incipient tuberculosis, which refers to the latent infection state that has begun to progress to active tuberculosis. The importance of early detection of these individuals with a high-risk of progression to active tuberculosis is emphasized to efficiently implement targeted tuberculosis preventive therapy. However, the tuberculin skin test or interferon-γ release assay, which is currently used for the diagnosis of latent tuberculosis infection, does not aid in the prediction of the risk of progression to active tuberculosis. Thus, a novel test is urgently needed. Recently, simultaneous and systematic analysis of differentially expressed genes using a high-throughput platform has enabled the discovery of key genes that may serve potential biomarkers for the diagnosis or prognosis of diseases. This host transcriptional investigation has been extended to the field of tuberculosis, providing promising results. The present review focuses on recent progress and challenges in the field of blood transcriptional signatures to predict progression to active tuberculosis.

Preoperative risk evaluation and perioperative management of patients with obstructive sleep apnea: a narrative review

  • Eunhye Bae
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.4
    • /
    • pp.179-192
    • /
    • 2023
  • Obstructive sleep apnea (OSA) is a common sleep-breathing disorder associated with significant comorbidities and perioperative complications. This narrative review is aimed at comprehensively overviewing preoperative risk evaluation and perioperative management strategies for patients with OSA. OSA is characterized by recurrent episodes of upper airway obstruction during sleep leading to hypoxemia and arousal. Anatomical features, such as upper airway narrowing and obesity, contribute to the development of OSA. OSA can be diagnosed based on polysomnography findings, and positive airway pressure therapy is the mainstay of treatment. However, alternative therapies, such as oral appliances or upper airway surgery, can be considered for patients with intolerance. Patients with OSA face perioperative challenges due to difficult airway management, comorbidities, and effects of sedatives and analgesics. Anatomical changes, reduced upper airway muscle tone, and obesity increase the risks of airway obstruction, and difficulties in intubation and mask ventilation. OSA-related comorbidities, such as cardiovascular and respiratory disorders, further increase perioperative risks. Sedatives and opioids can exacerbate respiratory depression and compromise airway patency. Therefore, careful consideration of alternative pain management options is necessary. Although the association between OSA and postoperative mortality remains controversial, concerns exist regarding adverse outcomes in patients with OSA. Understanding the pathophysiology of OSA, implementing appropriate preoperative evaluations, and tailoring perioperative management strategies are vital to ensure patient safety and optimize surgical outcomes.

Cerebral fat embolism syndrome: diagnostic challenges and catastrophic outcomes: a case series

  • Hussein A.Algahtani;Bader H. Shirah;Nawal Abdelghaffar;Fawziah Alahmari;Wajd Alhadi;Saeed A. Alqahtani
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.2
    • /
    • pp.207-211
    • /
    • 2023
  • Fat embolism syndrome is a rare but alarming, life-threatening clinical condition attributed to fat emboli entering the circulation. It usually occurs as a complication of long-bone fractures and joint reconstruction surgery. Neurological manifestations usually occur 12 to 72 hours after the initial insult. These neurological complications include cerebral infarction, spinal cord ischemia, hemorrhagic stroke, seizures, and coma. Other features include an acute confusional state, autonomic dysfunction, and retinal ischemia. In this case series, we describe three patients with fat embolism syndrome who presented with atypical symptoms and signs and with unusual neuroimaging findings. Cerebral fat embolism may occur without any respiratory or dermatological signs. In these cases, diagnosis was established after excluding other differential diagnoses. Neuroimaging using brain magnetic resonance imaging is of paramount importance in establishing a diagnosis. Aggressive hemodynamic and respiratory support from the beginning and consideration of orthopedic surgical intervention within the first 24 hours after trauma are critical to decreased morbidity and mortality.

Diet and Nutrition among Asian Americans: Challenges and Opportunities

  • Lee Soo-Kyung
    • Journal of Community Nutrition
    • /
    • v.8 no.2
    • /
    • pp.90-95
    • /
    • 2006
  • Asian Americans is a minority population contributing approximately 4% to the total population of the United States, however it is one of the fastest growing populations. Although Asian Americans as a group have socioeconomic profiles that are similar to white Americans, significant variations exists within and across Asian ethnic groups. The top ten leading causes of death for Asian Americans includes cancer, heart diseases, stroke, unintentional injuries, diabetes, influenza and pneumonia, chronic lower respiratory disease, suicide, nephritis, and septicemia. The prevalence of obesity is lower among Asian Americans, however this should be taken with considerations specific to Asians. High salt and low calcium consumption seem to be dietary risk factors for Asian Americans, although dietary patterns are changing with acculturation. Factors affecting dietary patterns are discussed in this paper. A proactive nutrition education approach for Asian Americans should be promoting maintaining 'healthy' aspects of ethnic diets and adopting 'healthy' American diets. Collaboration with nutrition educators in Asian countries would be helpful to overcome limited resources available for researching and developing nutrition education messages and materials for Asian Americans. (J Community Nutrition 8(2): 90-95, 2006)

COVID-19 Drug Development

  • Kim, Seungtaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Diagnostics, vaccines, and drugs are indispensable tools and control measures employed to overcome infectious diseases such as coronavirus disease 2019 (COVID-19). Diagnostic tools based on RT-PCR were developed early in the COVID-19 pandemic and were urgently required for quarantine (testing, tracing and isolation). Vaccines such as mRNA vaccines and virus-vectored vaccines were also successfully developed using new platform technologies within one year after identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of COVID-19. Drug development has been conducted in various ways including drug repurposing, convalescent plasma therapy, and monoclonal antibody development. Among the above efforts, this review examines COVID-19 drug development along with the related and upcoming challenges.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

Documentation of Physiological Parameters and Blood Profile in Newly Born Kajli Lambs

  • Saddiqi, H.A.;Nisa, M.;Mukhtar, N.;Shahzad, M.A.;Jabbar, A.;Sarwar, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.912-918
    • /
    • 2011
  • Newly born lambs have to face challenges in a new environment totally different from that of the uterus. Adaptation to extra-uterine life involves functional changes with almost each organ and system in the body undergoing a series of metabolic and anatomical modifications. Failure to adapt the extra-uterine environment can not only lead to homeostatic disturbances but also lead to the death of the affected lambs. Hematological parameters of newly born lambs show variability that differs between breeds of lambs. The purpose of present study was to determine homeostatic responses and physiological reference values in Kajli breed lambs occurring in the neonatal period through changes in blood profile, respiratory rate, heart rate, live weight and rectal, scrotal and skin temperatures. For this purpose, sixteen clinically fit lambs (males = 10 and females = 6) with a mean body weight $6.92{\pm}0.46$ kg were selected. Physiological data of selected parameters of each Kajli lamb was recorded at three day intervals and hematological parameters at five days for a period of 30 days. In general, statistical analysis showed a significant effect of time (p<0.001) on all the studied physiological and hematological parameters except platelets counts, white blood cells and hemoglobin concentration. The results documented in the current study are an addition to existing knowledge of the physiology of Kajli sheep breed should be helpful in developing feeding, disease diagnoses and treatment protocols for newborn Kajli stock.

Effects of Particulate Matter 10 Inhalation on Lung Tissue RNA expression in a Murine Model

  • Han, Heejae;Oh, Eun-Yi;Lee, Jae-Hyun;Park, Jung-Won;Park, Hye Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • Background: Particulate matter 10 (PM10; airborne particles <10 ㎛) inhalation has been demonstrated to induce airway and lung diseases. In this study, we investigate the effects of PM10 inhalation on RNA expression in lung tissues using a murine model. Methods: Female BALB/c mice were affected with PM10, ovalbumin (OVA), or both OVA and PM10. PM10 was administered intranasally while OVA was both intraperitoneally injected and intranasally administered. Treatments occurred 4 times over a 2-week period. Two days after the final challenges, mice were sacrificed. Full RNA sequencing using lung homogenates was conducted. Results: While PM10 did not induce cell proliferation in bronchoalveolar fluid or lead to airway hyper-responsiveness, it did cause airway inflammation and lung fibrosis. Levels of interleukin 1β, tumor necrosis factor-α, and transforming growth factor-β in lung homogenates were significantly elevated in the PM10-treated group, compared to the control group. The PM10 group also showed increased RNA expression of Rn45a, Snord22, Atp6v0c-ps2, Snora28, Snord15b, Snora70, and Mmp12. Generally, genes associated with RNA splicing, DNA repair, the inflammatory response, the immune response, cell death, and apoptotic processes were highly expressed in the PM10-treated group. The OVA/PM10 treatment did not produce greater effects than OVA alone. However, the OVA/PM10-treated group did show increased RNA expression of Clca1, Snord22, Retnla, Prg2, Tff2, Atp6v0c-ps2, and Fcgbp when compared to the control groups. These genes are associated with RNA splicing, DNA repair, the inflammatory response, and the immune response. Conclusion: Inhalation of PM10 extensively altered RNA expression while also inducing cellular inflammation, fibrosis, and increased inflammatory cytokines in this murine mouse model.