• Title/Summary/Keyword: Respiratory Resistance

Search Result 352, Processing Time 0.024 seconds

Control of Ventilation during Sleep (수면 중 호흡의 조절)

  • Kim, Woo-Sung
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.1
    • /
    • pp.19-25
    • /
    • 1999
  • Sleep alters both breathing pattern and the ventilatory responses to external stimuli. These changes during sleep permit the development or aggravation of sleep-related hypoxemia in patients with respiratory disease and contribute to the pathogenesis of apneas in patients with the sleep apnea syndrome. Fundamental effects of sleep on the ventilatory control system are 1) removal of wakefulness input to the upper airway leading to the increase in upper airway resistance, 2) loss of wakefulness drive to the respiratory pump, 3) compromise of protective respiratory reflexes, and 4) additional sleep-induced compromise of ventilatory control initiated by reduced functional residual capacity on supine position assumed in sleep, decreased $CO_2$ production during sleep, and increased cerebral blood flow in especially rapid eye movement(REM) sleep. These effects resulted in periodic breathing during unsteady non-rapid eye movement(NREM) sleep even in normal subjects, regular but low ventilation during steady NREM sleep, and irregular breathing during REM sleep. Sleep-induced breathing instabilities are divided due primarily to transient increase in upper airway resistance and those that involve overshoots and undershoots in neural feedback mechanisms regulating the timing and/or amplitude of respiratory output. Following ventilatory overshoots, breathing stability will be maintained if excitatory short-term potentiation is the prevailing influence. On the other hand, apnea and hypopnea will occur if inhibitory mechanisms dominate following the ventilatory overshoot. These inhibitory mechanisms include 1) hypocapnia, 2) inhibitory effect from lung stretch, 3) baroreceptor stimulation, 4) upper airway mechanoreceptor reflexes, 5) central depression by hypoxia, and 6) central system inertia. While the respiratory control system functions well during wakefulness, the control of breathing is commonly disrupted during sleep. These changes in respiratory control resulting in breathing instability during sleep are related with the pathophysiologic mechanisms of obstructive and/or central apnea, and have the therapeutic implications for nocturnal hypoventilation in patients with chronic obstructive pulmonary disease or alveolar hypoventilation syndrome.

  • PDF

The Role of Innate and Adaptive Immune Cells in the Immunopathogenesis of Chronic Obstructive Pulmonary Disease

  • Nurwidya, Fariz;Damayanti, Triya;Yunus, Faisal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.1
    • /
    • pp.5-13
    • /
    • 2016
  • Chronic obstructive pulmonary disease (COPD) is a chronic and progressive inflammatory disease of the airways and lungs that results in limitations of continuous airflow and is caused by exposure to noxious gasses and particles. A major cause of morbidity and mortality in adults, COPD is a complex disease pathologically mediated by many inflammatory pathways. Macrophages, neutrophils, dendritic cells, and CD8+ T-lymphocytes are the key inflammatory cells involved in COPD. Recently, the non-coding small RNA, micro-RNA, have also been intensively investigated and evidence suggest that it plays a role in the pathogenesis of COPD. Here, we discuss the accumulated evidence that has since revealed the role of each inflammatory cell and their involvement in the immunopathogenesis of COPD. Mechanisms of steroid resistance in COPD will also be briefly discussed.

Characteristics and Antimicrobial Resistance Patterns of Staphylococcus aureus Isolated from Horse (국내 말에서 분리된 Staphylococcus aureus의 특성 및 약제 내성 양상)

  • Choi, Seong-Kyoon;Cho, Gil-Jae
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.69-74
    • /
    • 2008
  • This study carried out to investigate the antimicrobial resistance and biochemical characteristics of Staphylococcus aureus (S. aureus) isolated from reproductive and respiratory tract in Thoroughbred horse. The specimens were collected from equine vaginal mucosa and upper respiratory tract from March to December 2006 using a culture swab in Korea. S. aureus suspected colonies on blood agar plates were selected and identified as standard biochemical tests and PCR (Applied Biosystems, USA). Antimicrobial resistance test of S. aureus isolates was performed with 30 antimicrobial agents (BBL, USA) by using the agar disk diffusion method. S. aureus isolates were isolated 58 (39.2%) strains of 148 samples: wound 64.7% (11/17), genital discharge 37.0% (37/100) and nasal discharge 32.2% (10/31). Almost isolates showed high resistance to spectinomycin, sulfonamides, erythromycin, tetracyelin, ciprofloxacin and penicillin. These results may provide the basic information to establish strategies for treatment and prevention of reproductive and respiratory disease in Thoroughbred horses in Korea.

Effects of Wearing COVID-19 Protective Face Masks on Respiratory, Cardiovascular Responses and Wear Comfort During Rest and Exercise (휴식과 운동 중 COVID-19 대응 보건용 마스크 착용이 호흡·심혈관계 반응 및 착용감에 미치는 영향)

  • Jung, Jae-Yeon;Kang, ChanHyeok;Seong, Yuchan;Jang, Se-Hyeok;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.6
    • /
    • pp.862-872
    • /
    • 2020
  • This study explores the effects of facemasks on respiratory, thermoregulatory, cardiovascular responses during exercise on a treadmill and at rest. Five male subjects (25.8 ± 0.8 y, 171.8 ± 9.2 cm in height, 79.8 ± 28.1 kg in weight) participated in the following five experimental conditions: no mask, KF80, KF94, KF99, and N95. Inhalation resistance was ranked as KF80 < KF94 < N95 < KF99 and dead space inside a mask was ranked as KF80 = KF94 < N95 < KF99. The surface area covered by a mask was on average 1.1% of the total body surface area. The results showed no significant differences in body core temperature, oxygen consumption (VO2), carbon dioxide production (VCO2), heart rate or subjective perception among the five experimental conditions; however, cheek temperature, respiratory ventilation and blood pressure were greater for KF80 or KF94 conditions when compared to KF99 or N95 conditions (p<0.05). The differences among mask conditions are attributed to the dead space or specific designs (cup type vs pleats type) rather than the filtration level. In addition, the results suggest that improving mask design can help mitigate respiratory resistance from increased filtration.

The Application of Impulse Oscillometry(IOS) in the Detection of Smoking Induced Early Airway Obstruction (Impulse Oscillometry(IOS)를 이용한 흡연자에서의 조기 기도폐쇄의 연구)

  • Kim, Youn-Seup;Kweon, Suk-Hoe;Song, Mi-Young;Yoo, Sun-Mi;Park, Jae-Seuk;Jee, Young-Koo;Lee, Kye-Young;Kim, Keun-Youl
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.5
    • /
    • pp.1030-1039
    • /
    • 1997
  • Background : Impulse Oscillometry is a noninvasive and effort-independent test used to characterize the mechanical impedance of the respiratory system. The clinical potential of the IOS is rapid and demands only passive cooperation which makes it especially appealing for children, for epidemiologic surveys and for conditions in which quiet breathig instead of forced expiratory maneuvers are preferred. However, several studies have shown conflicting results that the role of IOS about detection of smoking induced small airway diseases or early airway obstruction Methods : Study was to evaluate the clinical ability of the IOS to detect about smoking induced early airway obstruction in persons with normal spirometry test. Respiratory asymptomatic study groups were formed that one is non-smoking group, another is smoking group. Results : The parameters of spirometry were not significantly differences between non-smoking group and smoking group. Among the parameters of IOS, total resistance(non-smoking group : smoking group=$2.22{\pm}1.20$ : $2.58{\pm}1.71$), peripheral resistance($1.25{\pm}0.62$ : $1.47{\pm}0.10$), bronchial compliance($0.44{\pm}0.12$ : $0.47{\pm}0.16$) were not statistically significant different (p<0.05), but central resistance and lung compliance were not statistically significant different (unit ; resistance=hPa/l/s, compliance=l/hPa). Resistance(Rrs) was not statistically significant different with changes of frequences(5, 10, 15, 20, 25, 30, 35Hz), but Reactance(Xrs) was statistically significant different with low frequences that X5(non-smoking group : smoking group=$-0.62{\pm}0.28$ : $-0.76{\pm}0.48$, p<0.001) and X10($-0.06{\pm}0.19$ : $-0.15{\pm}0.33$, p<0.013) (unit; hPall/s, $hPa{\cong}cmH_2O$). Conclusion : Impulse oocillometer(IOS) is clinically available method to detect about smoking induced early airway obstruction. And clinically potential parameters of IOS were considers that total resistance, peripheral resistance, bronchial resistance, and reactance of low frequency at 5Hz, 10Hz.

  • PDF

Clinical Significance of Airway Resistance Curve by the Body Plethysmograph (Body Plethysmograph를 이용한 Airway Resistance Curve의 임상적 의의)

  • Cheon, Seon-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.2
    • /
    • pp.218-225
    • /
    • 1995
  • Background: Airway resistance(Raw) is measured with the body plethysmograph by displaying the relationship between airflow and alveolar pressure($V/P_A$). If the resistance curve on $V/P_A$ tracing is curved or looped, the estimation of Raw is difficult. This study was designed to examine wheather there is any correlation between the shape of resistance curve and the clinical status and the pulmonary function of patients. Methods: The 146 pulmonary disease patients with increased Raw were included in this study. The shapes of resistance curves on $V/P_A$ tracing with body plethysmograph during quiet breathing were analyzed and compared with pulmonary function. Results: The results were as follows ; 1) The shapes of resistance curves were summarized in 5 categories; type 1: linear, type 2: ovoid, type 3: sigmoid, type 4: scoop, type 5: paisley. The type 3 except 1 case, type 4 and type 5 were found to have loop mainly in expiratory phase. 2) Although the shapes of resistance curves were not typical for specific disease, the resistance curves of acute disease tended to belong to type 1 or 2 and those of chronic airflow obstruction tended to belong to type 3, 4 or 5. But resistance curves of bronchial asthma and destructive lung with tuberculosis showed all types in proportion to degree of airflow obstruction or destruction of parenchyme. 3) In the cases of resistance curves going to type 5 rather than type 1 and those with looping, airflow obstuction tended to be severe and airway resistance and residual volume tended to increase. Conclusions: Analysis of resistance curve on $V/P_A$ tracing measuring airway resistance is helpful for judging degree of airflow obstruction and air trapping. Although the shape of resistance curve is not typical for specific disease, there is a close association between looping and airway obstruction.

  • PDF

High-flow nasal cannula oxygen therapy in children: a clinical review

  • Kwon, Ji-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.1
    • /
    • pp.3-7
    • /
    • 2020
  • High-flow nasal cannula (HFNC) is a relatively safe and effective noninvasive ventilation method that was recently accepted as a treatment option for acute respiratory support before endotracheal intubation or invasive ventilation. The action mechanism of HFNC includes a decrease in nasopharyngeal resistance, washout of dead space, reduction in inflow of ambient air, and an increase in airway pressure. In preterm infants, HFNC can be used to prevent reintubation and initial noninvasive respiratory support after birth. In children, flow level adjustments are crucial considering their maximal efficacy and complications. Randomized controlled studies suggest that HFNC can be used in cases of moderate to severe bronchiolitis upon initial low-flow oxygen failure. HFNC can also reduce intubation and mechanical ventilation in children with respiratory failure. Several observational studies have shown that HFNC can be beneficial in acute asthma and other respiratory distress. Multicenter randomized studies are warranted to determine the feasibility and adherence of HFNC and continuous positive airway pressure in pediatric intensive care units. The development of clinical guidelines for HFNC, including flow settings, indications, and contraindications, device management, efficacy identification, and safety issues are needed, particularly in children.

Effects of nasopharyngeal microbiota in respiratory infections and allergies

  • Kang, Hyun Mi;Kang, Jin Han
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.11
    • /
    • pp.543-551
    • /
    • 2021
  • The human microbiome, which consists of a collective cluster of commensal, symbiotic, and pathogenic microorganisms living in the human body, plays a key role in host health and immunity. The human nasal cavity harbors commensal bacteria that suppress the colonization of opportunistic pathogens. However, dysbiosis of the nasal microbial community is associated with many diseases, such as acute respiratory infections including otitis media, sinusitis and bronchitis and allergic respiratory diseases including asthma. The nasopharyngeal acquisition of pneumococcus, which exists as a pathobiont in the nasal cavity, is the initial step in virtually all pneumococcal diseases. Although the factors influencing nasal colonization and elimination are not fully understood, the adhesion of opportunistic pathogens to nasopharyngeal mucosa receptors and the eliciting of immune responses in the host are implicated in addition to bacterial microbiota properties and colonization resistance dynamics. Probiotics or synbiotic interventions may show promising and effective roles in the adjunctive treatment of dysbiosis; however, more studies are needed to characterize how these interventions can be applied in clinical practice in the future.

Reference values for respiratory system impedance using impulse oscillometry in school-aged children in Korea (학동기 소아에서 impulse oscillometry system로 측정한 폐기능 정상치)

  • Wee, Young Sun;Kim, Hyoung Yun;Jung, Da Wun;Park, Hye Won;Shin, Yoon Ho;Han, Man Yong
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.9
    • /
    • pp.862-867
    • /
    • 2007
  • Purpose : The impulse oscillometry (IOS) is applicable to young children because it requires minimal cooperation and a non-invasive method to measure the mechanics of respiratory system. This study aimed to develop the reference values in school-aged children in Korea, using IOS which is a modification of forced oscillation technique (FOT). Methods : Measurements were performed in 92 previously untrained healthy children, aged 7 to 12 years old, using IOS. We analyzed the relationships between the data about their age, height, weight, body surface area (BSA), body mass index (BMI) and the result of IOS using the linear regression test. Results : The success rate of IOS was 92.4%. Stepwise multiple regression of resistance of respiratory system (Rrs) and reactance of respiratory system (Xrs) in natural form for age, height, weight, BSA, BMI showed that height was the most significant predictor and altogether of 5 variables explained the Rrs and Xrs most. Our regression equations at multiple frequencys were comparable to published reference values, especially about the Rrs obtained at 5 Hz. Conclusion : IOS is a feasible method to measure the respiratory resistance in untrained children. We got the reference values using IOS and it seems to be useful to diagnose a variety of respiratory diseases.

Respiratory Review of 2014: Tuberculosis and Nontuberculous Mycobacterial Pulmonary Disease

  • Park, Cheol Kyu;Kwon, Yong Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.4
    • /
    • pp.161-166
    • /
    • 2014
  • Since tuberculosis (TB) remains a major global health concern and the incidence of multi-drug resistant (MDR)-TB is increasing globally, new modalities for the detection of TB and drug resistant TB are needed to improve TB control. The Xpert MTB/RIF test can be a valuable new tool for early detection of TB and rifampicin resistance, with a high sensitivity and specificity. Late-generation fluoroquinolones, levofloxacin, and moxifloxacin, which are the principal drugs for the treatment of MDR-TB, show equally high efficacy and safety. Systemic steroids may reduce the overall TB mortality attributable to all forms of TB across all organ systems, although inhaled corticosteroids can increase the risk of TB development. Although fixed dose combinations were expected to reduce the risk of drug resistance and increase drug compliance, a recent meta-analysis found that they might actually increase the risk of relapse and treatment failure. Regarding treatment duration, patients with cavitation and culture positivity at 2 months of TB treatment may require more than 6 months of standard treatment. New anti-TB drugs, such as linezolid, bedaquiline, and delamanid, could improve the outcomes in drug-resistant TB. Nontuberculous mycobacterial lung disease has typical clinical and immunological phenotypes. Mycobacterial genotyping may predict disease progression, and whole genome sequencing may reveal the transmission of Mycobacterium abscessus. In refractory Mycobacterium avium complex lung disease, a moxifloxacin-containing regimen was expected to improve the treatment outcome.