• Title/Summary/Keyword: Respiration Analysis

Search Result 335, Processing Time 0.026 seconds

Effects of Music Therapy on the Heart Rate and Respiration Rate in Premature Infants (음악 요법이 미숙아의 심박동수와 호흡수에 미치는 영향)

  • Yoo, Kyung Hee
    • Journal of Korean Biological Nursing Science
    • /
    • v.17 no.3
    • /
    • pp.271-276
    • /
    • 2015
  • Purpose: This study was to evaluate the effects on the heart rate and respiration rate of preterm infants when providing auditory stimulation on them. Methods: The design of this study was a nonequivalent control group pretest-posttest design in a quasi experimental study. Forty preterm infants were assigned to experimental and control groups : 20 in the auditory and 20 in the control group. The data were collected from May 2014 to October. The auditory stimulation was created by using an audio music tape provided 20-minute per day for 7 consecutive days. In data analysis, SPSS WIN 21.0 program was utilized for descriptive statistics, repeated measurement anova and Mann-Whitney. Results: General characteristics of the two groups showed no significant differences, thus two groups were found to be homogenous. There were no significant differences in heart rate and respiration rate between the auditory and control groups. Conclusion: The effect of auditory stimulation for 7 days was not effective in decreasing heart rate or respiration rate in premature infants. Therefore, the type and length of music therapy must be developed for the improvement of vital signs in preterm infants who were hospitalized in a neonatal intensive care unit.

Nitrification process analysis by respirometry in a sequencing batch reactor (호흡률을 이용한 연속회분식반응조의 질산화 공정 해석)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • The respirometric technique has been used to analyze the nitrification process in a sequencing batch reactor(SBR) treating municipal wastewater. Especially the profile of the respiration rate very well expressed the reaction characteristics of nitrification. As the nitrification process required a significant amount of oxygen for nitrogen oxidation, the respiration rate due to nitrification was high. The maximum nitrification respiration rate, which was about $50mg\;O_2/L{\cdot}h$ under the period of sufficient nitrification, was related directly to the nitrification reaction rate and showed the nitrifiers activity. The growth rate of nitrifiers is the most critical parameter in the design of the biological nutrient removal systems. On the basis of nitrification kinetics, the maximum specific growth rate of nitrifiers in the SBR was estimated as $0.91d^{-1}$ at $20^{\circ}C$, and the active biomass of nitrifiers was calculated as 23 mg VSS/L and it was about 2% of total biomass.

Development of Non-contact Home Monitoring System for Infant Respiration to Prevent SIDS (영아 돌연사 방지를 위한 비접촉 방식의 가정용 영아 호흡 감시 시스템 개발)

  • Heo, Il-Kang;Myoung, Hyoun-Seok;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.48-53
    • /
    • 2015
  • Sudden infant death syndrome(SIDS) continues to be general cause of infant death. Also, apnea is supposed to be one of the main risk factor of SIDS. Therefore, Infant's respiratory monitoring and real-time apnea detection is very important to prevent SIDS. In this study, we proposed a non-contact home monitoring system for infant's respiration using Doppler radar in order to prevent SIDS. The respiration data were acquired from a commercialized baby simulator(Simbaby$^{TM}$) using a Doppler radar. To evaluate a performance of the proposed system, the simulator was placed in a supine and prone position and the chest belt was used simultaneously as a reference signal. As a result, correlation coefficients between respiration rates of Doppler radar and the chest belt in each position were 0.95(p < 0.001) and 0.98(p < 0.001), respectively. The averages of difference were $-0.29{\pm}5.21(mean{\pm}1.96{\cdot}$ standard deviation) in supine and $-0.12{\pm}3.05$ in prone from Bland-Altman analysis. The results indicated an excellent performance in detecting apnea with a sensitivity of 100% and a positive predictive value of 100% in each posture respectively. These results demonstrated that a proposed Doppler radar system is suitable for non-contact respiratory monitoring in order to prevent SIDS of infant.

Emotion Recognition Method Using Heart-Respiration Connectivity (심장과 호흡의 연결성을 이용한 감성인식 방법)

  • Lee, Dong Won;Park, Sangin;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.61-70
    • /
    • 2017
  • Physiological responses have been measured to recognize emotion. Although physiological responses have been interrelated between organs, their connectivities have been less considered for emotion recognizing. The connectivities have been assumed to enhance emotion recognition. Specially, autonomic nervous system is physiologically modulated by the interrelated functioning. Therefore, this study has been tried to analyze connectivities between heart and respiration and to find the significantly connected variables for emotion recognition. The eighteen subjects(10 male, age $24.72{\pm}2.47$) participated in the experiment. The participants were asked to listen to predetermined sound stimuli (arousal, relaxation, negative, positive) for evoking emotion. The bio-signals of heart and respiration were measured according to sound stimuli. HRV (heart rate variability) and BRV (breathing rate variability) spectrum were obtained from spectrum analysis of ECG (electrocardiogram) and RSP (respiration). The synchronization of HRV and BRV spectrum was analyzed according to each emotion. Statistical significance of relationship between them was tested by one-way ANOVA. There were significant relation of synchronization between HRV and BRV spectrum (synchronization of HF: F(3, 68) = 3.605, p = 0.018, ${\eta}^2_p=0.1372$, synchronization of LF: F(3, 68) = 5.075, p = 0.003, ${\eta}^2_p=0.1823$). HF difference of synchronization between ECG and RSP has been able to classify arousal from relaxation (p = 0.008, d = 1.4274) and LF's has negative from positive (p = 0.002, d = 1.7377). Therefore, it was confirmed that the heart and respiration to recognize the dimensional emotion by connectivity.

Affecting Factor Analysis for Respiration Rate Measurement Using Depth Camera (깊이 카메라를 이용한 호흡률 측정에 미치는 영향 요인 분석)

  • Oh, Kyeong-Taek;Shin, Cheung-Soo;Kim, Jeongmin;Jang, Won-Seuk;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.19 no.3
    • /
    • pp.81-88
    • /
    • 2016
  • The purpose of this research was to analyze several factors that can affect the respiration rate measurement using the Creative Senz3D depth camera. Depth error and noise of the depth camera were considered as affecting factors. Ambient light was also considered. The result of this study showed that the depth error was increased with an increase of the distance between subject and depth camera. The result also showed depth asymmetry in the depth image. The depth values measured in right region of the depth image was higher than real distance and depth values measured in left of the depth image was lower than real distance. The difference error of the depth was influenced by the orientation of the depth camera. The noise created by the depth camera was increased as the distance between subject and depth camera was increased and it decreased as the window size was increased which was used to calculate noise level. Ambient light seems to have no influence on the depth value. In real environment, we measured respiration rate. Participants were asked to breathe 20 times. We could find that the respiration rate which was measured from depth camera shows excellent agreement with that of participants.

Comparison of Maximum Phonation Time Associated with the Changes in Vocal Intensity in Patients with Unilateral Vocal Fold Palsy and Sulcus Vocalis (성대마비와 성대구증의 강도 변화에 따른 최대발성지속시간 비교)

  • Choi, Se-Jin;Choi, Hong-Shik;Kim, Jae-Ock;Choi, Yae-Lin
    • Phonetics and Speech Sciences
    • /
    • v.4 no.1
    • /
    • pp.125-131
    • /
    • 2012
  • The patients with incomplete glottic closure have an important feature decreasing the maximum phonation time (MPT) because airflow rate or air leakage is greater than people without voice disorders. Also they can appear a problem in the intensity regulation. This study analyzed MPT difference based on the comfortable intensity and louder intensity and the correlation between MPT and respiration volume of unilateral vocal fold palsy (UVFP) and sulcus vocalis (SV) group. The twenty with UVFP, the 21 with SV, the 21 normal subjects measured MPT in /a/ vowel prolongation task with comfortable intensity and louder intensity and compared analysis by measuring FVC, $FEV_1$, $FEV_1/FVC$ to analyze the correlation between MPT and respiration volume. First, a comparison of MPT according to the intensity between groups is that MPT of the normal group was statistically significant long compared to the patient group in comfortable intensity, but MPT between groups was not statistically significant difference in the louder intensity. Second, an analysis of the correlation between MPT and respiration volume is that this was statistically significant correlation between MPT in comfortable intensity and MPT in louder intensity. But this did not show statistically significant correlation between intensity and respiration volume. This study can be supported the preceding study results deduced that shorting MPT of the patient group compared to the normal group was originated in the problem of laryngeal valving mechanism at the level of vocal folds rather than a problem of respiratory function. Also at the phonation by varying the intensity, the result can deduce that in the case of patient group, the length of MPT had been improved by increasing the glottal closure ratio in the louder intensity. These results can support the theoretical basis that should be applied to the clinicians by varying the intensity at the voice evaluation and voice therapy for the patients with the glottis incompetence.

Analysis of Soil CO2 efflux across three age classes of plantation Pinus koraiensis (임령이 다른 잣나무림에서의 토양 호흡 분석)

  • Nam, Ki-Jung
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.116-123
    • /
    • 2018
  • The objective of this study was to examine effects of stand age on soil $CO_2$ efflux in plantation Pinus koraiensis, and to elucidate what extent plant (fine) root and soil microbial biomass contribute to the whole soil $CO_2$ efflux. In three age classes (20-yr-old. 40-yr-old, 70-yr-old) of plantation Pinus koraiensis, in-situ soil respiration, plant fine root biomass and soil microbial biomass were measured from April to November in 2004. Regardless of stand age, soil temperature and soil $CO_2$ efflux increased until July then slowly decreased. Soil respiration was higher in 70-yr-old stand than in 20- and 40-yr stands. Fine root biomass and soil microbial biomass was also higher in 70-yr-old stand. Root exclusion decreased soil respiration in 40-yr stand, but not in 70-yr stand. Soil microbial biomass was higher in 70-yr stand, but there was no monthly variation between July and November. The results suggest that soil respiration may increase as plant stand ages and microbial contribution could play more roles in older stands.

Whole-genome Transcriptional Responses to Hypoxia in Respiration-proficient and Respiration-deficient Yeasts: Implication of the Mitochondrial Respiratory Chain in Oxygen-regulated Gene Expression (저산소 환경에 대한 전체 유전자 발현 반응에서 미토콘드리아 호흡계의 연루)

  • Lee, Bo Young;Lee, Jong-Hwan;Byun, June-Ho;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1137-1152
    • /
    • 2016
  • Cells sense, respond, and adapt to a low oxygen environment called hypoxia, which is widely involved in a variety of human diseases. Adaptation to low oxygen concentrations includes gene expression changes by inducing hypoxic genes and reducing aerobic genes. Recently, the mitochondrial respiratory chain has been implicated in the control of these oxygen-regulated genes when cells experience hypoxia. In order to obtain an insight into an effect of the mitochondrial respiratory chain on cellular response to hyxpoxia, we here examined whole genome transcript signatures of respiration-proficient and respiration-deficient budding yeasts exposed to hypoxia using DNA microarrays. By comparing whole transcriptomes to hypoxia in respiration-proficient and respiration-deficient yeasts, we found that there are several classes of oxygen-regulated genes. Some of them require the mitochondrial respiratory chain for their expression under hypoxia while others do not. We found that the majority of hypoxic genes and aerobic genes need the mitochondrial respiratory chain for their expression under hypoxia. However, we also found that there are some hypoxic and aerobic genes whose expression under hypoxia is independent of the mitochondrial respiratory chain. These results indicate a key involvement of the mitochondrial respiratory chain in oxygen-regulated gene expression and multiple mechanisms for controlling oxygen-regulated gene expression. In addition, we provided gene ontology analyses and computational promoter analyses for hypoxic genes identified in the study. Together with differentially regulated genes under hypoxia, these post-analysis data will be useful resources for understanding the biology of response to hypoxia.

Seasonal Variation of Contribution of Leaf-Litter Decomposition Rate in Soil Respiration in Temperate Deciduous Forest (토양호흡의 계절적 변이에 기여하는 리터의 분해속도)

  • Suh Sang-Uk;Min Youn-Kyung;Lee Jae-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • In a forest ecosystem, the major source of soil carbon input is from litterfall and its decomposition. To understand the effect of litterfall and litter decomposition on seasonal variation of soil respiration and litter decomposition rates were measured in temperate deciduous forest in Korea. Annual litterfall collected from litter trap (1m x 1m) were 147.5 ± 8.2g Cm/sup -2/ yr/sup -1/ in 2003. About 47% of litterfall were Quercus serrata leaf followed by Carpinus laxiflora leaf (27 %), Carpinus cordata leaf (7 %), and others, such as other leaf, bark, branch, and acorn, were 20%. The decomposition rate was the highest in C. cordata (33.03%, k = 0.46), followed by C. laxiflora (25.73%, k = 0.30), and Q. serrata (24.17%, k = 0.28). The continuous measurement of soil respiration from January 2004 to December 2004 was carried out using AOCC (Automatic Open-Closed multi-Chamber system). The annual soil respiration rate was 629.6g Cm/sup -2/ yr/sup -1/ and the litter decomposition was 30.0g Cm/sup -2/ yr/sup -1/. The portion of litter decomposition rate on soil respiration rate was about 5%. From January to February, when the soil respiration rate was the lowest, about 11 % of soil respiration (7.4 ± l.4g Cm/sup -2/ month/sup -1/) were effected by litter decomposition rate (0.8g Cm/sup -2/ month/sup -1/). The highest soil respiration rate (111.5 ± 16.2g Cm/sup -2/ month/sup -1/) and litter decomposition rate (11.4g Cm/sup -2/ month/sup -1/) were showed in July to August. According to the regression analysis between soil respiration rate and litter decomposition, the soil respiration rate were related to litter decomposition with the correlations (r = 0.63).

A development of measuring system for Autonomic Nervous Activity (자율신경계 활성도 측정 시스템 개발)

  • 이준하
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.141-146
    • /
    • 2000
  • Power spectrum analysis is a powerful noninvasive tool for quantifying autonomic nervous system activity. In this paper, We developed a measuring system for Autonomic Nervous Activity by using power spectrum analysis method to obtain the activities of autonomic nervous system. This system adopt a isolated power for patient's safety. In this system, Two output signal is obtained - R-R interval time variability and Respiration time variability. Time variability is use to find out some disease related to Autonomic Nervous System. Experimental tested range is 30 ~ 240 BPM for ECG and 15~80 BPM for Respiration.

  • PDF