• Title/Summary/Keyword: Respiration (RSP)

Search Result 9, Processing Time 0.024 seconds

The study on emotion recognition by time-dependent parameters of autonomic nervous response (TDP(time-dependent parameters)를 적용하여 분석한 자율신경계 반응에 의한 감성인식에 대한 연구)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Kim, Young-Joo;Woo, Jin-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.11 no.4
    • /
    • pp.637-644
    • /
    • 2008
  • Human emotion has been tried to be recognized by physiological measurements in developing emotion machine enabling to understand and react to user's emotion. This study is to find the time-dependent physiological measurements and their variation characteristics for discriminating emotions according to dimensional emotion model. Ten university students were asked to watch sixteen prepared images to evoke different emotions. Their subjective emotions and autonomic nervous responses such as ECG (electrocardiogram), PPG (photoplethysmogram), GSR (Galvanic skin response), RSP (respiration), and SKT(skin temperature) were measured during experiment. And these responses were analyzed into HR(Heart Rate), Respiration Rate, GSR amplitude average, SKT amplitude average, PPG amplitude, and PTT(Pulse Transition Time). TDPs(Time dependent parameters) defined as the delay, the activation, the half recovery and the full recovery of respective physiological signal in this study have been determined and statistically compared between variations from different emotions. The significant tendencies in TDP were shown between emotions. Therefore, TDP may provide useful measurements with emotion recognition.

  • PDF

Emotion Recognition Method Using Heart-Respiration Connectivity (심장과 호흡의 연결성을 이용한 감성인식 방법)

  • Lee, Dong Won;Park, Sangin;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.61-70
    • /
    • 2017
  • Physiological responses have been measured to recognize emotion. Although physiological responses have been interrelated between organs, their connectivities have been less considered for emotion recognizing. The connectivities have been assumed to enhance emotion recognition. Specially, autonomic nervous system is physiologically modulated by the interrelated functioning. Therefore, this study has been tried to analyze connectivities between heart and respiration and to find the significantly connected variables for emotion recognition. The eighteen subjects(10 male, age $24.72{\pm}2.47$) participated in the experiment. The participants were asked to listen to predetermined sound stimuli (arousal, relaxation, negative, positive) for evoking emotion. The bio-signals of heart and respiration were measured according to sound stimuli. HRV (heart rate variability) and BRV (breathing rate variability) spectrum were obtained from spectrum analysis of ECG (electrocardiogram) and RSP (respiration). The synchronization of HRV and BRV spectrum was analyzed according to each emotion. Statistical significance of relationship between them was tested by one-way ANOVA. There were significant relation of synchronization between HRV and BRV spectrum (synchronization of HF: F(3, 68) = 3.605, p = 0.018, ${\eta}^2_p=0.1372$, synchronization of LF: F(3, 68) = 5.075, p = 0.003, ${\eta}^2_p=0.1823$). HF difference of synchronization between ECG and RSP has been able to classify arousal from relaxation (p = 0.008, d = 1.4274) and LF's has negative from positive (p = 0.002, d = 1.7377). Therefore, it was confirmed that the heart and respiration to recognize the dimensional emotion by connectivity.

Design of FMCW Radar Signal Processor for Human and Objects Classification Based on Respiration Measurement (호흡 기반 사람과 사물 구분 가능한 FMCW 레이다 신호처리 프로세서의 설계)

  • Lee, Yungu;Yun, Hyeongseok;Kim, Suyeon;Heo, Seongwook;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • Even though various types of sensors are being used for security applications, radar sensors are being suggested as an alternative due to the privacy issues. Among those radar sensors, PD radar has high-complexity receiver, but, FMCW radar requires fewer resources. However, FMCW has disadvantage from the use of 2D-FFT which increases the complexity, and it is difficult to distinguish people from objects those are stationary. In this paper, we present the design and the implementation results of the radar signal processor (RSP) that can distinguish between people and object by respiration measurement using phase estimation without 2D-FFT. The proposed RSP is designed with Verilog-HDL and is implemented on FPGA device. It was confirmed that the proposed RSP includes 6,425 LUT, 4,243 register, and 12,288 memory bits with 92.1% accuracy for target's breathing status.

The Optimal respiration training based work-related stress relief system (최적 호흡 훈련기반 업무 스트레스 완화 시스템)

  • Lee, Yangwoo;Whang, MinCheol
    • Science of Emotion and Sensibility
    • /
    • v.17 no.2
    • /
    • pp.85-90
    • /
    • 2014
  • The purpose of the study is to develop self-management system that people can enhance physical and psychological health through repeating by themselves to relieve work-related stress. The regular respiration can help homeostasis of heart to maintain. Also the effect can be stabilized from irregular heart rhythm by work-related stress. People have optimal respiration cycle to stabilize heart rhythm and repeat training using their RSP(respiration) time including expiration and inhalation. This system is not only offering optimal respiration training service but also finding optimal respiration cycle. The adults who have stress from work participated in verification experiment. This study expects to help those people who are workers related to call center jobs in emotional labor can relieve their stress. It can also help to enhance their own health and increase their work efficiency.

Emotional Preference Modulates Autonomic and Cortical Responses to Tactile Stimulation (촉각자극에 의한 자율신경계 및 뇌파 반응과 감성)

  • Estate Sokhadze;Lee, Kyung-Hwa;Imgap Yi;Park, Sehun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.225-229
    • /
    • 1998
  • The purpose of the current study was comparative analysis of autonomic and electrocortical responses to passive and active touch of the tektites with different subjective emotional preference. Perspective goal of the project is development of a template for classification of tactile stimuli according to subjective comfort and associated physiological manifestations. The study was carried out on 36 female college students. Physiological signals were acquired by Grass and B10PAC 100 systems with AcqKnowledge III software. Frontal, parietal and occipital EEG (relative power spectrum /percents/ of EEG bands - delta, theta, slow and fast alpha, low and fast beta), and autonomic variables, namely heart rate (HR), respiratory sinus arrhythmia (RSA), pulse transit time (PTT), respiration rate (RSP) and skin conductance parameters (SCL, amplitude, rise time and number of SCRs) were analyzed for rest baseline and stimulation conditions. Analysis of the overall pattern of reaction indicated that autonomic response to tactile stimulation was manifested in a form of moderate HR acceleration, RSP increase, RSA decrease (lowered vagal tone), decreased n and increased electrodermal activity (increased SCL, several SCRs) that reflects general sympathetic activation. Parietal EEG effects (on contra-lateral side to stimulated hand) were featured by short-term alpha-blocking, slightly reduced theta and significantly increased delta and enhanced fast beta activity with few variations across stimuli. The main finding of the study was that most and least preferred textures exhibited significant differences in autonomic (HR, RSP, PTT, SCR, and at less extent in RSA and SCL) and electrocortical responses (delta, slow and fast alpha, fast beta relative power). These differences were recorded both in passive and active stimulation modes, thus demonstrating reproducibility of distinction between most and least emotionally preferred tactile stimuli, suggesting influence of psychological factors, such as emotional property of stimulus, on physiological outcome. Nevertheless, development of sufficiently sensitive .and reliable template for classification of emotional responses to tactile stimulation based on physiological response pattern may require more extensive empirical database.

  • PDF

Passive and Active Touch of Fabrics: Psychophysiological Responses Modulation by the Emotional Preference of Touched Textures

  • Estate Sokhadze;Imgap Yi;Lee, Kyunghwa;Shon, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.1 no.2
    • /
    • pp.13-22
    • /
    • 1998
  • The sense of touch has both objective and subjective characteristics. During hand evaluation of the fabrics. psycho physiological processes such as emotion and stimulation. On other site, the mode of touch (passive vs. active) is also capable to modulate somatosensory responses. I.e., suppress somatocensory perception during active electrocortical responses to passive and active touch of the textiles with different subjective emotional preference. The study was carried out on 36 female college students. Physiological signals were acquired by Grass and BIOPAC 100 systems with AcqKnowledge variables, namely heart rate (HR), respiratory sinus arrhythmia (RSA), pulse transit time (PTT), respiration rate (RSP) and skin conductance parameters (SCL, amplitude, risetime and number of SCRs) were analyzed for baseline and stimulation conditions. Analysis was manifested in a form of moderate HR acceleration. RSP increase, RSA decrease (lowered vagal tone), decreased PTT and increased electrodermal activity (increased SCL, several SCRs) that reflects general sympathetic activation. Parietal EEG effects (on contra-lateral side to stimulated hand)were featured by short-term alpha-blocking, slightly reduced theta, significantly increased delta and enhanced fast beta activity with few variations across stimuli. The main finding of the study was that most and least preferred textures exhibited significant differences in autonomic (HR, RSP, PTT, SCR, and at less extent in RSA and SCL) and electrocortical responses (delta, slow and fast alpha, fast beta relative power). These differences were recorded both in passive and active stimulation modes, thus demonstrating reproducibility of distinction between most and least emotionally preferred tactile stimuli, suggesting influence of psychological factors, such as emotional property of stimulus, on physiological outcome.

  • PDF

Development of 3 Channel Biomedical Signal Measurement System for Mac-yule (맥율용 3채널 생체신호 계측시스템 개발)

  • Byeon, M.K.;Kim, H.J.;Jang, J.K.;Han, S.W.;Huh, W.
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.24-29
    • /
    • 2007
  • In this paper, we developed a Mac-Yule measurement system which consider psychological stable state of patience. The developed system consist with a hardware device that can derive a EEG, respiration and pulse wave, and a software which acquire a biological signal and signal processing The EEGs are derived with bipolar method from frontal head. The respiration signals obtain from nasal front with a transducer which consist with thermistor bridge. The pulse waves are detected from earlobe with photoplethysmograph method. A power spectrum of EEG are used as the decision parameters of psychological stable state of patience. The decision of Mac-Yule are defined as origin text method that of numbers of pulse to 1 respiration period. As the results of experiment with developed system, we could have a spectrum band discretion of EEG signal, stable respiration signal detection and automatic gain controlled pulse signal with realtime. And then, we could detect Mac-Yules from processed signals.

  • PDF

Breathing Information Extraction Algorithm from PPG Signal for the Development of Respiratory Biofeedback App (호흡-바이오피드백 앱 개발을 위한 PPG기반의 호흡 추정 알고리즘)

  • Choi, Byunghun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.794-798
    • /
    • 2018
  • There is a growing need for a care system that can continuously monitor, manage and effectively relieve stress for modern people. In recent years, mobile healthcare devices capable of measuring heart rate have become popular, and many stress monitoring techniques using heart rate variability analysis have been actively proposed and commercialized. In addition, respiratory biofeedback methods are used to provide stress relieving services in environments using mobile healthcare devices. In this case, breathing information should be measured well to assess whether the user is doing well in biofeedback training. In this study, we extracted the heart beat interval signal from the PPG and used the oscillator based notch filter based on the IIR band pass filter to track the strongest frequency in the heart beat interval signal. The respiration signal was then estimated by filtering the heart beat interval signal with this frequency as the center frequency. Experimental results showed that the number of breathing could be measured accurately when the subject was guided to take a deep breath. Also, in the timeing measurement of inspiration and expiration, a time delay of about 1 second occurred. It is expected that this will provide a respiratory biofeedback service that can assess whether or not breathing exercise are performed well.

A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor (자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구)

  • Hyun-Seung Cho;Jin-Hee Yang;Sang-Yeob Lee;Jeong-Whan Lee;Joo-Hyeon Lee;Hoon Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • This study develops a time-varying system-based noncontact fabric sensor that can measure cerebral blood-flow signals to explore the possibility of brain blood-signal detection and emotional evaluation. The textile sensor was implemented as a coil-type sensor by combining 30 silver threads of 40 deniers and then embroidering it with the computer machine. For the cerebral blood-flow measurement experiment, subjects were asked to attach a coil-type sensor to the carotid artery area, wear an electrocardiogram (ECG) electrode and a respiration (RSP) measurement belt. In addition, Doppler ultrasonography was performed using an ultrasonic diagnostic device to measure the speed of blood flow. The subject was asked to wear Meta Quest 2, measure the blood-flow change signal when viewing the manipulated image visual stimulus, and fill out an emotional-evaluation questionnaire. The measurement results show that the textile-sensor-measured signal also changes with a change in the blood-flow rate signal measured using the Doppler ultrasonography. These findings verify that the cerebral blood-flow signal can be measured using a coil-type textile sensor. In addition, the HRV extracted from ECG and PLL signals (textile sensor signals) are calculated and compared for emotional evaluation. The comparison results show that for the change in the ratio because of the activation of the sympathetic and parasympathetic nervous systems due to visual stimulation, the values calculated using the textile sensor and ECG signals tend to be similar. In conclusion, a the proposed time-varying system-based coil-type textile sensor can be used to study changes in the cerebral blood flow and monitor emotions.