• Title/Summary/Keyword: Resonator Antenna

Search Result 103, Processing Time 0.026 seconds

Circular Polarization Patch Antenna with GPS and GLONASS Stopband for Satellite Communication (GPS, GLONASS 저지대역을 갖는 위성통신용 원편파 패치안테나)

  • Kim, Joo-Suk;Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.245-252
    • /
    • 2018
  • In this paper, the dual band circular polarization patch antenna was designed by using band rejection characteristics of CSRR structure for geostationary satellites. A quadrangular CSRR structure was etched on the ground at the rear of the patch antenna's feed to obtain band rejection characteristics in between the receiving frequency band(1525~1559MHz) and transmission band(1626.5~1660.5MHz), and the corner of the patch antenna was truncated to enable circular polarization. It was confirmed that the resonant frequency of the patch antenna differs according to the size anc location of the CSRR and cirular polarization characteristics with simulation and measurement results. Measurement results shows the gain of about 0.2dB and 1.5dB in the TX and RX band.

Microstrip Resonator for Simultaneous Application to Filter and Antenna (여파기와 안테나로 동시 적용이 가능한 마이크로스트립 공진기)

  • Sung, Young-Je;Kim, Duck-Hwan;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.475-485
    • /
    • 2010
  • This paper proposes a novel concept for a microstrip resonator that can function as a filter and as an antenna at the same time. The proposed structure consists of an outer ring, an open loop-type inner ring, a circular patch, and three ports. The frequencies where the proposed structure works as a filter and as an antenna, respectively, are determined primarily by the radius of the inner ring and the circular patch. The measured results show that, when the microstrip resonator operates as a filtering device, this filter has about 15.1 % bandwidth at the center frequency of 0.63 GHz and a minimum insertion loss of 1.5 dB within passband. There are three transmission zeros at 0.52 GHz, 1.14 GHz, and 2.22 GHz. In the upper stopband, cross coupling - taking place at the stub of the outer ring - and the open loop-type inner ring produce one transmission zero each. The circular patch generates the dual-mode property of the filter and another transmission zero, whose location can be easily adjusted by altering the size of the circular patch. The proposed structure works as an antenna at 2.7 GHz, showing a gain of 3.8 dBi. Compared to a conventional patch antenna, the proposed structure has a similar antenna gain. At the resonant frequencies of the filter and the antenna, high isolation(less than -25 dB) between the filter port and the antenna port can be obtained.

Preparation of Large Area Plasma Source by Helical Resonator Arrays (Helical Resonator 배열을 통한 대면적 고밀도 Plasma Source)

  • 손민영;김진우;박세근;오범환
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.282-285
    • /
    • 2000
  • Four helical resonators are distributed in a 2 ${\times}$ 2 array by modifying upper part of the conventional reactive ion etching(RIE) type LCD etcher in order to prepare a large area plasma source. Since the resonance condition of the RF signal to the helical antenna, one RF power supply is used for delivering the power efficiently to all four helical resonators without an impedance matching network Previous work of 2 ${\times}$ 2array inductively coupled plasma(ICP)requires one matching circuit to each ICP antenna for more efficient power deliverly Distributions of ion density and electron temperature are measured in terms of chamber pressure, gas flow rate and RF power . By adjusting the power distribution among the four helical resonator units, argon plasma density of higher than 10$\^$17/㎥ with the uniformity of better than 7% can be obtained in the 620 ${\times}$ 620$\textrm{mm}^2$ chamber.

  • PDF

Scanned Array Antenna using Fabry Perot Resonator (패브리 패롯 공진기형 위상배열 안테나 설계)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.50-55
    • /
    • 2012
  • Fabry-Perot (FP) resonator antennas with scan capabilities are described in this paper. The proposed antennas, excited by a thinned array, not only achieve higher directivities but also improve suppression of sidelobes relative to that of the thin array alone. Compared to the conventional microstrip patch array, the directivity enhancement and suppression of sidelobe level were achieved by increase of the aperture size of the proposed Fabry-Perot resonator antenna.

Magnetic field detector using inductively coupled SRR and simple loop antenna (SRR과 단순한 루프안테나를 유도 결합시킨 자기장 검출기)

  • Lee, Wang-Joo;Ju, Jeong-Ho;Kim, Dong-Ho;Choi, Jae-Ick
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.28-34
    • /
    • 2008
  • A magnetic field detector as a potential MRI receiver is proposed. The proposed device is composed of SRR(split ring resonator) which is a kind of LC resonator first introduced as a negative permeability material and a simple loop antenna. The proposed device showed similar degree of performance to commercial one with a simpler circuit.

Tuning of Dielectric Resonator Loaded Cavity Filler Using BST (BST를 이용한 유전체 공진기 내장 도파관 필터의 Tuning)

  • Hong, Soon-Hee;Won, Doo-Ho;Kim, Kyung-Tae;Kim, Jeong-Phill
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.761-763
    • /
    • 2004
  • 최근에 위성용 필터로서 유전체 공진기 내장 도파관 필터가 많이 연구되고 있다. 이 필터의 튜닝을 위하여 튜닝 스크류가 일반적으로 사용되어져 왔는데 튜닝 스크류의 사용은 복잡한 필터의 튜닝 시 너무 소모적인 작업을 야기시키고 미세한 튜닝에 어려움이 있어서 다른 해결책을 필요로 한다. 또한 제품의 사용 시에는 온도등의 외부환경의 변화에 대하여 대처를 하기 위하여 전기적인 튜닝을 이용한 튜닝의 자동화에 대한 필요성이 대두되었다. 이에 대한 해결책으로 BST($Ba_xSr_{1-x}TiO_3$)라는 강유전체를 이용하는 튜닝에 대하여 소개하고 한 경우에 대하여 FDTD 방시의 EM 시뮬레이션을 구하여 그 결과로서 전기저인 필터 튜닝의 가능성을 보여준다.

  • PDF

Design and Fabrication of UWB Antenna Using the SRR for WLAN Band Rejection (SRR을 이용한 WLAN 대역 저지용 UWB 안테나의 설계 및 제작)

  • Jo, Nam-I;Kim, Dang-Oh;Kim, Che-Young;Choi, Dong-Muk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.1014-1020
    • /
    • 2009
  • In this paper, a novel UWB(Ultra Wide-band) antenna with suppressed band of IEEE 802.11a($5.15{\sim}5.825\;GHz$) WLAN was designed and fabricated by using SRR(Split Ring Resonator) with band rejection property. MWS(Micro-wave Studio) of CST company was utilized in the design stage. The antenna was fabricated on a substrate, Rogers 4003, with the thickness of 0.8 mm and relative permittivity of 3.38. The measured result shows that the proposed antenna has a good return loss below -10 dB and group delay below 1nsec over UWB communication band($3.1{\sim}10.6\;GHz$) except WLAN band. It also shows the omni-directional radiation pattern.

Design of CPW-Fed Broadband Antenna Using the CSRR for WLAN Band Notched Characteristic (CSRR을 이용한 WLAN 대역 저지 특성 CPW 급전 광대역 안테나 설계)

  • Kim, Jang-Yeol;Lee, Seung-Woo;Kim, Nam;Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.528-537
    • /
    • 2011
  • In this paper, a broadband antenna of the CPW structure with a band-notched characteristic is presented. To obtain this characteristic, the complementary split ring resonator(CSRR) is inserted in the ground plane. In addition, the IEEE 802.11a WLAN band(5.15~5.825 GHz) appears in the band-notched characteristic. The proposed antenna dimension is $36{\times}60{\times}1.6\;mm^3$, and it is designed on the FR-4 substrate having a relative dielectric constant of 4.4. The designed antenna shows that the resonant frequency is 2.03~10.78 GHz below the return loss of -10 dB and a VSWR less than 2 was satisfied. As a result, the proposed CSRR has a band-notched characteristic in the range of 4.917~6.017 GHz which the center frequency is about 5.4 GHz band.

Design of Compact CPW-fed Slot Antenna Using Split-Ring Resonators (분할 링 공진기를 이용한 소형 CPW급전 슬롯 안테나 설계)

  • Park, Jin-Taek;Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2351-2358
    • /
    • 2014
  • In this paper, a design method for a compact CPW-fed slot antenna using SRRs is studied. The structure of the proposed slot antenna is a rectangular slot antenna loaded with SRR conductors inside the slot to reduce the antenna size. Optimal design parameters are obtained by analyzing the effects of the gap between the SRR conductors and slot, and the width of the SRR conductors on the input VSWR characteristic. The optimized compact slot antenna operating at 2.45 GHz band is fabricated on an FR4 substrate with a dimension of 36 mm by 30 mm. The length of the proposed compact slot antenna is reduced to 14.3% compared to that of a conventional rectangular slot antenna. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.4-2.49 GHz for a VSWR < 2, and measured gain of 2.3 dBi at 2.45 GHz.

Design of Miniaturized CPW-fed Slot Antenna for 2.45 GHz WLAN Band Applications (2.45 GHz 무선 랜 대역 응용을 위한 소형 CPW급전 슬롯 안테나 설계)

  • Park, Jin-Taek;Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.157-158
    • /
    • 2014
  • In this paper, a design method for a compact CPW-fed slot antenna using SRRs(split-ring resonators) is studied. The structure of the proposed slot antenna is a rectangular slot antenna loaded with SRR conductors inside the slot to reduce the antenna size. Optimal design parameters are obtained by analyzing the effects of the gap between the SRR conductors and slot, and the width of the SRR conductors on the input reflection coefficient characteristic. The optimized compact slot antenna operating at 2.45 GHz band is fabricated on an FR4 substrate with a dimension of 36 mm by 30 mm. The length of the proposed compact slot antenna is reduced by 14.3% compared to that of a conventional rectangular slot antenna. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.4-2.49 GHz for a VSWR < 2.

  • PDF