• 제목/요약/키워드: Resonant type accelerometer

검색결과 9건 처리시간 0.028초

Wafer Level Vacuum Packaged Out-of-Plane and In-Plane Differential Resonant Silicon Accelerometers for Navigational Applications

  • Kim, Illh-Wan;Seok, Seon-Ho;Kim, Hyeon-Cheol;Kang, Moon-Koo;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권1호
    • /
    • pp.58-66
    • /
    • 2005
  • Inertial-grade vertical-type and lateral-type differential resonant accelerometers (DRXLs) are designed, fabricated using one process and tested for navigational applications. The accelerometers consist of an out-of-plane (for z-axis) accelerometer and in-plane (for x, y-axes) accelerometers. The sensing principle of the accelerometer is based on gap-sensitive electrostatic stiffness changing effect. It says that the natural frequency of the accelerometer can be changed according to an electrostatic force on the proof mass of the accelerometer. The out-of-plane resonant accelerometer shows bias stability of $2.5{\mu}g$, sensitivity of 70 Hz/g and bandwidth of 100 Hz at resonant frequency of 12 kHz. The in-plane resonant accelerometer shows bias stability of $5.2{\mu}g$, sensitivity of 128 Hz/g and bandwidth of 110 Hz at resonant frequency of 23.4 kHz. The measured performances of two accelerometers are suitable for an application of inertial navigation.

Development of a Micromachined Differential Type Resonant Accelerometer and Its Performance

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung;Seok, Seon-Ho;Chun, Kuk-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2182-2186
    • /
    • 2003
  • This paper presents the differential type resonant accelerometer (DRXL) and its performance test results. The DRXL is the INS grade, surface micro-machined sensor. The proposed DRXL device produces a differential digital output upon an applied acceleration, and the principle is a gap-dependent electrical stiffness variation of the electrostatic resonator with torsion beam structures. Using this new operating concept, we designed, fabricated and tested the proposed device. The final device was fabricated by using the wafer level vacuum packaging process. To test the performance of the DRXL, a nonlinear self-oscillation loop is designed using describing function technique. The oscillation loop is implemented using discrete electronic elements. The performance test of the DRXL shows that the sensitivity of the accelerometer is 12 Hz/g and its long term bias stability is about $2mg(1{\sigma})$. The turn on repeatability, bandwidth, and dynamic range are 4.38 mg, 100 Hz, and ${\pm}\;70g$, respectively.

  • PDF

광섬유를 이용한 미세 광 기계식 가속도 센서의 개발 (Development of Micro-opto-mechanical Accelerometer using Optical fiber)

  • 이승재
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.93-99
    • /
    • 2011
  • This paper presents a new type of optical silicon accelerometer using deep reactive ion etching (DRIE) and micro-stereolithography technology. Optical silicon accelerometer is based on a mass suspended by four vertical beams. A vertical shutter at the end of the mass can only moves along the sensing axis in the optical path between two single-mode optical fibers. The shutter modulates intensity of light from a laser diode reaching a photo detector. With the DRIE technique for (100) silicon, it is possible to etch a vertical shutter and beam. This ensures low sensitivity to accelerations that are not along the sensing axis. The microstructure for sensor packaging and optical fiber fixing was fabricated using micro stereolithography technology. Designed sensors are two types and each resonant frequency is about 15 kHz and 5 kHz.

표면미세가공기술을 이용한 수평감지방식의 정전용량형 다결정 실리콘 가속도계의 설계, 제작 및 가공 오차 영향 분석 (Design, Fabrication and Micromachining Error Evaluation for a Surface-Micromachined Polysilicon Capacitice Accelerometer)

  • 김종팔;한기호;조영호
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.529-536
    • /
    • 2001
  • We investigate a surface-micromachined capacitive accelerometer with the grid-type electrodes surrounded by a perforated proof-mass frame. An electromechanical analysis of the microaccelerometer has been performed to obtain analytical formulae for natural frequency and output sensitivity response estimation. A set of prototype devices has been designed and fabricated based on a 4-mask surface-micromachining process. The resonant frequency of 5.8$\pm$0.17kHz and the detection sensitivity of 0.28$\pm$0.03mV/g have been measured from the fabricated devices. The parasitic capacitance of the detection circuit with a charge amplifier has been measured as 3.34$\pm$1.16pF. From the uncertainty analysis, we find that the major uncertainty in the natural frequency of the accelerometer comes from the micromachining error in the beam width patterning process. The major source of the sensitivity uncertainty includes uncertainty of the parasitic capacitance, the inter-electrode gap and the resonant frequency, contributing to the overall sensitivity uncertainty in the portions of 75%, 14% and 11%, respectively.

Dynamic response of free-end rod with consideration of wave frequency

  • Kim, Sang Yeob;Lee, Jong-Sub;Tutumluer, Erol;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.25-33
    • /
    • 2022
  • The energy transferred on drill rods by dynamic impact mainly determines the penetration depth for in-situ tests. In this study, the dynamic response and transferred energy of drill rods are determined from the frequency of the stress waves. AW-type drill rods of lengths 1 to 3 m are prepared, and strain gauges and an accelerometer are installed at the head and tip of the connected rods. The drill rods are hung on strings, allowing free vibration, and then impacted by a pendulum hammer with fixed potential energy. Increasing the rod length L increases the wave roundtrip time (2L/c, where c is the wave velocity), and hence the transferred energy at the rod head. At the rod tip, the first velocity peak is higher than the first force peak because a large and tensile stress wave is reflected, and the transferred energy converges to zero. The resonant frequency increases with rod length in the waveforms measured by the strain gauges, and fluctuates in the waveforms measured by the accelerometer. In addition, the dynamic response and transferred energy are perturbed when the cutoff frequency is lower than 2 kHz. This study implies that the resonant frequency should be considered for the interpretation of transferred energy on drill rods.

Transient oscilaltion analysis for MEMS resonant accelerometer

  • Sangkyung Sung;Lee, Jang-Gyu;Taesam Kang;Sung, Woon-Tahk;Chul Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.98.1-98
    • /
    • 2002
  • In principle, a resonance type sensor generally has an oscillation characteristic. Thus, an analysis on transient oscillation response takes a great interest since it is related to the performance of resonant sensor. In particular, system bandwidth has tradeoff with oscillation accuracy, i.e. quality factor. For an efficient analysis of the oscillation characteristic, several analytic methods are introduced and summarized. The results are fundamentally based on the classical describing function method, but can explain the transient oscillation by introducing time varying concept about the predicted limit cycle. After introducing those methods, the application results to the specified system...

  • PDF

고온용 전압형 가속도센서의 온도특성 (High Temperature Sensitivity Characteristics of the Voltage Type High Temperature Piezoelectric Accelerometer)

  • 김영덕;김광일;정우철;고재석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1285-1287
    • /
    • 1998
  • Vibration measurements to monitor the condition of machinery and machine elements offers several advantages over traditional methods of nondestructive evaluation. RIST(Research Institute of Industrial Science & Technology) has established a calibration system for accelerometers that measures within a frequency range from 2Hz to 6,300Hz and a temperature range from $-40^{\circ}C$ to $180^{\circ}C$. The calibration procedures are based on the principle of the comparison method. To monitor vibration signals of machinery and machine elements, annular shear type piezoelectric accelerometers employing solid state microelectronics were fabricated. The voltage sensitivity and resonant frequency of fabricated accelerometers was 83mV/g, 23kHz, respectively. This paper discusses the method of fabrication of annular shear type piezoelectric accelerometers and the results of field tests in POSCO(Pohang Iron & Steel Co. LTD.).

  • PDF

PCN-PZT 압전형 가속도센서의 특성에 관한 연구 (A Study on the Characteristics of PCN-PZT Piezoelectric Acceleration Sensor)

  • 김영덕;김광일;정우철;고재석
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.354-360
    • /
    • 1999
  • PCN-PZT piezoelectric acceleration sensors of annular shear mode voltage type were fabricated and their characteristics have been investigated. Field tests are also carried out. To avoid noise problems from the environmental conditions, acceleration sensors employed solid state micro-electronics for pre-amplifier. The calibration procedures based on the principle of the comparison method were adopted for investigating the characteristics of fabricated acceleration sensors. The voltage sensitivity and resonant frequency of fabricated acceleration sensors were 83mv/g, 23kHz, respectively. The lower and upper frequency limit were 4Hz and 9kHz, respectively. The variation of the voltage sensitivity showed 10% at $-406{\circ}C\; and\; 9%\; at\; 121^{\circ}C$ compared to that of reference temperature at $40^{\circ}C$.

  • PDF

정원창 구동기의 진동체 성능 평가를 위한 내이 물리모델 (A Physical Cochlear Model for Transducer Performance Evaluation of Implantable Hearing Aid with Round Window Driver)

  • 신동호;임형규;정의성;성기웅;이정현;조진호
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.150-155
    • /
    • 2013
  • Recently, various hearing aids are developed to overcome hearing loss. There are available hearing aids, such as air conduction hearing aid, implantable middle ear hearing aid and so on. But air conduction hearing aid is inconvenience caused by howling, and ossicle chain driving type implantable middle ear hearing aid has some week point due to problem of possible nercobiosis of coupling spot along incus long process. In recent years, in order to improve these shortcomings round window (RW) driving hearing aid has been paying attention. In this paper, the physical cochlear model is proposed for a performance evaluation of the RW driving hearing aids of a transducer. In order to verify an experiment proposed on a performance of physical cochlear model, the transducer which has ossicles characteristics is used. By measuring and comparing the frequency characteristics of transducer with ossicles and human temporal bone, performance of physical cochlear model was verified. As from the result of experiment, it is expected that an implemented cochlear model is useful for evaluating characteristics of RW transducer.