• Title/Summary/Keyword: Resonant frequencies

Search Result 448, Processing Time 0.028 seconds

Bandwidth Enhancement of a Meander Slot Antenna with Harmonic Suppression (고조파 억압 특성을 갖는 미앤더 슬롯 안테나의 대역폭 향상에 관한 연구)

  • Hwang, Kwang-Sun;Kim, Hyung-Rak;Chang, Ki-Hoon;Ha, Jung-Uk;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.961-966
    • /
    • 2003
  • Bowtie shaped meander slot antenna with harmonic suppression is designed and demonstrated experimentally. A substrate with height of 0.508 mm and relative permittivity of 2.5 is used, and the fundamental resonant frequency is 5.536 GHz. With thin conductor line in the antenna, harmonic suppression characteristic is obtained, and return losses at the 2nd and 3rd harmonic frequencies are -0.56 dB and -1.9 dB, respectively. Also, bowtie shape is applied to the antenna design for bandwidth enhancement, and the resulting bandwidth is 3.7 %, which is about three times wider than the reported meander slot antenna with harmonic suppression$\^$[1],[2]/.

An ultra low-noise radio frequency amplifier based on a dc SQUID

  • Andre, Marc-Olivier;Kinion, Darin;Clarke, John;Muck, Michael
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.2-6
    • /
    • 2000
  • We have developed an extremely sensitive radio frequency amplifier based on the dc superconducting quantum interference device (dc SQUID). Unlike a conventional semiconductor amplifier, a SQUID can be cooled to ultra-low temperatures (100 mK or less) and thus potentially achieve a much lower noise temperature. In a conventional SQUID amplifier, where the integrated input coil is operated as a lumped element, parasitic capacitance between the coil and the SQUID washer limits the frequency up to which a substantial gain can be achieved to a few hundred MHz. This problem can be circumvented by operating the input coil of the SQUID as a microstrip resonator: instead of connecting the input signal open. Such amplifiers have gains of 15 dB or more at frequencies up to 3 GHz. If required, the resonant frequency of the microstrip can be tuned by means of a varactor diode connected across the otherwise open end of the resonator. The noise temperature of microstrip SQUID amplifiers was measured to be between $0.5\;K\;{\pm}\;0.3\;K$ at a frequency of 80 MHz and $1.5\;K\;{\pm}\;1.2\;K$ at 1.7 GHz, when the SQUID was cooled to 4.2 K. An even lower noise temperature can be achieved by cooling the SQUID to about 0.4 K. In this case, a noise temperature of $100\;mK\;{\pm}\;20\;mK$ was achieved at 90 MHz, and of about $120\;{\pm}\;100\;mK$ at 440 MHz.

  • PDF

An Ultra Low-noise Radio Frequency Amplifier Based on a DC SQUID

  • Muck, Michael;Ande, Marc-Olivier;Kinion, Darin;Clarke, John
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • We have developed an extremely sensitive radio frequency amplifier based on the dc superconducting quantum interference device (dc SQUID). Unlike a conventional semiconductor amplifier, a SQUID can be cooled to ultra-low temperatures (100 mK or less) and thus potentially achieve a much lower noise temperature. In a conventional SQUID amplifier, where the integrated input coil is operated as a lumped element, parasitic capacitance between the coil and the SQUID washer limits the frequency up to which a substantial gain can be achieved to a few hundred MHz. This problem can be circumvented. by operating the input coil of the SQUID as a microstrip resonator: instead of connecting the input signal between the two ends of the coil, it is connected between the SQUID washer and one end of the coil; the other end is left open. Such amplifiers have gains of 15 dB or more at frequencies up to 3 GHz. If required, the resonant frequency of the microstrip can be tuned by means of a varactor diode connected across the otherwise open end of the resonator. The noise temperature of microstrip SQUID amplifiers was measured to be between 0.5 K $\pm$ 0.3 K at a frequency of 80 MHz and 1.5 K $\pm$: 1.2 K at 1.7 GHz, when the SQUID was cooled to 4.2 K. An even lower noise temperature can be achieved by cooling the SQUID to about 0.4 K. In this case, a noise temperature of 100 mK $\pm$ 20 mK was achieved at 90 MHz, and of about 120 $\pm$ 100 mK at 440 MHz.

  • PDF

Dual Band Microstrip Antenna with Modified Inset Feeder and a Slot (수정된 Inset 급전선과 단일 슬롯을 이용한 이중대역 마이크로스트립 안테나)

  • Rhee, Seung-Yeop
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.800-807
    • /
    • 2016
  • In this paper, we study the characteristics of dual band microstip antenna with modified inset feeder and a single slot. The modified inset feeder consists of the vertical inset feeder placed in x direction and the horizontal one in y direction for shortening the total length of inset feeder. The optimun feeding position for good impedance matching at two resonant frequencies can be easily found by adjusting the horizontal inset distance. And Various frequency ratios can be simply obtained by the parameters of slot. The measurements for fabricated antenna prototypes are carried out for validation. The measured results show a tunable frequency ratio from 1.25 to 1.88 with the variation of slot parameters. It is worthwhile to point out that the radiation patterns are similar at both bands. and below -20.0 dB of cross polarization level at the E plane.

Blast vibration of a large-span high-speed railway tunnel based on microseismic monitoring

  • Li, Ao;Fang, Qian;Zhang, Dingli;Luo, Jiwei;Hong, Xuefei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.561-569
    • /
    • 2018
  • Ground vibration is one of the most undesirable effects induced by blast operation in mountain tunnels, which could cause negative impacts on the residents living nearby and adjacent structures. The ground vibration effects can be well represented by peak particle velocity (PPV) and corner frequency ($f_c$) on the ground. In this research, the PPV and the corner frequency of the mountain surface above the large-span tunnel of the new Badaling tunnel are observed by using the microseismic monitoring technique. A total of 53 sets of monitoring results caused by the blast inside tunnel are recorded. It is found that the measured values of PPV are lower than the allowable value. The measured values of corner frequency are greater than the natural frequencies of the Great Wall, which will not produce resonant vibration of the Great Wall. The vibration effects of associated parameters on the PPV and corner frequency which include blast charge, rock mass condition, and distance from the blast point to mountain surface, are studied by regression analysis. Empirical formulas are proposed to predict the PPV and the corner frequency of the Great Wall and surface structures due to blast, which can be used to determine the suitable blast charge inside the tunnel.

Micromirrors Driven by Detached Piezoelectric Microactuators For Low-voltage and Wide-angle Rotation (저전압 대회전을 위한 분리된 압전 구동기에 의한 미소거울)

  • Kim, Sung-Jin;Jin, Young-Hyun;Lee, Won-Chul;Nam, Hyo-Jin;Bu, Jong-Uk;Cho, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.149-155
    • /
    • 2006
  • This paper presents a torsional micromirror detached from PZT actuators (TMD), whose rotational motion is achieved by push bars in the PZT actuators detached from the micromirror. The push bar mechanism is intended to reduce the bending, tensile and torsional constraints generated by the conventional bending bar mechanism, where the torsional micromirror is attached to the PZT actuators (TMA). We have designed, fabricated and tested prototypes of TMDs for single-axis and dual-axis rotation, respectively. The single-axis TMD generates the static rotational angle of $6.1^{\circ}$ at 16 VDC, which is 6 times larger than that of single-axis TMA, $0.9^{\circ}$. However, the rotational response curve of TMD shows hysteresis due to the static friction between the cover and the push bar in the PZT actuator. We have shown that 63.2% of the hysteresis is due to the static friction caused by the initial contact force of the PZT actuaor. Without the initial contact force, the rotational response curve of TMD shows linear voltage-angle characteristics. The dual-axis TMD generates the static rotational angles of $5.5^{\circ}$ and $4.7^{\circ}$ in x-axis and y-axis, respectively at 16 VDC. The measured resonant frequencies of dual-axis TMD are $2.1\pm0.1$ kHz in x-axis and $1.7\pm0.1$ kHz in y-axis. The dual-axis TMD shows stable operation without severe wear for 21.6 million cycles driven by 16 Vp-p sinusoidal wave signal at room temperature.

Simulation of Resonance Shift and Quality Factor for Opto-fluidic Ring Resonator (OFRR) Biosensors (광-유체링공진기(OFRR) 바이오센서에 관한 공진이동과 양호도의 시뮬레이션)

  • Cho, Han-Keun;Han, Jin-Woo;Yang, Gil-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • In this work, the finite element method was used to investigate the shifts of resonance frequencies and quality factor of whispering-gallery-mode (WGM) for an opto-fluidic ring resonator (OFRR) biosensor. To describe the near-field radiation transfer, the time-domain Maxwell's equations were employed and solved by using the in-plane TE wave application mode of the COMSOL Multiphysics with RF module. The OFRR biosensor model under current study includes a glass capillary with a diameter of 100 mm and wall thickness of 3.0 mm. The resonance energy spectrum curves in the wavelength range from 1545 nm to 1560 nm were examined under different biosensing conditions. We mainly studied the sensitivity of resonance shifts affected by changes in the effective thickness of the sensor resonator ring with a 3.0 mm thick wall, as well as changes in the refractive index (RI) of the medium inside ring resonators with both 2.5 mm and 3.0 mm thick walls. In the bulk RI detection, a sensitivity of 23.1 nm/refractive index units (RIU) is achieved for a 2.5 mm thick ring. In small molecule detection, a sensitivity of 26.4 pm/nm is achieved with a maximum Q-factor of $6.3{\times}10^3$. These results compare favorably with those obtained by other researchers.

Dipole- and Loop-Mode Transformable Origami Paper Antenna (다이폴 상태와 루프 상태로 변환 가능한 종이접기 방식의 종이 안테나)

  • Lee, Dongju;Seo, Yunsik;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • A pattern-switchable origami antenna is designed with paper using inkjet-printing technology. The proposed antenna can be switched between loop and dipole antenna modes by folding and unfolding the paper, respectively. The proposed antenna is designed for the resonant frequencies of both modes to be 1.85 GHz. Eutectic gallium-indium liquid metal is introduced in order to avoid cracks in the conductive ink when the paper is folded. The performance of the proposed antenna is demonstrated through simulation and measurement results and antenna gain of dipole-mode and loop-mode are -4 dBi and -5 dBi, respectively. Also, the nulls of both dipole and loop modes compensate nulls from each mode.

Compact Dual-Band Bandpass Filter Using Two Dual-Mode Resonators (두 개의 이중 모드 공진기를 이용한 소형 이중 대역 통과 필터)

  • Kim, Kyoung-Keun;Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1447-1453
    • /
    • 2010
  • In this paper, the design and the fabrication of dual-band bandpass filter using two dual-mode resonators is presented. Dual-mode resonator using a short stub is miniaturized by inter-digital capacitor and stepped impedance. Two dual mode resonators are designed to have different resonant frequencies, one for the lower passband and the other for the upper passband. Transmission zero is positioned at low or high rejection bands with a sharp skirt characteristic. Dual-band operation can be achieved using dual feeding structure. For WLAN, the proposed filter at 2.45/5.25 GHz is designed and fabricated. The size of the filter is as compact as 1$10.83\;mm{\times}5.3\;mm$.

Comparative Study on the Motion Responses for a 40ft Class Cruise Leisure Boat (40ft 급 크루즈 레저보트의 운동성능 해석 및 모형시험 비교 연구)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Yum, Deuk-Joon;Zhang, Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.240-247
    • /
    • 2013
  • Hydrodynamic characteristics of a planing craft are very sensitive to the hull form variations, especially when the craft navigates with high-speed. Therefore, we need to verify hydrodynamic performances of the craft during the process of hull form design. In this paper, motion performances of a 40ft class cruise leisure boat are evaluated by both model tests and theoretical analyses using two different methods. Model tests are carried out at calm sea and regular wave conditions using high speed towing carriage installed in SNU towing tank. Theoretical methods used are a empirical method proposed by Martin (1976) and a potential method based on Rankine panel (DNV, 2010). The results from the theoretical methods are compared with and verified by those of model tests. Results of empirical formula showed somewhat larger motion RAOs and resonant frequencies than those of model tests. Potential based method showed even larger discrepancies with the model test results. From the analyses of comparison results, we could confirm the limitation of each theoretical method and suggest the way of improvement for the better prediction of motion performances.