• Title/Summary/Keyword: Resonant frequencies

Search Result 451, Processing Time 0.028 seconds

Design and Optimization of Suspension with Optical Flying Head Using Integrated Optimization Frame (통합최적프레임을 사용한 광부상헤드를 탑재한 서스팬션의 최적화)

  • Kim, Ji-Won;Park, Kyoung-Su;Yoon, Sang-Joon;Choi, Dong-Hoon;Park, Young-Pil;Lee, Jong-Soo;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.161-168
    • /
    • 2005
  • This paper optimizes the optical flying head(OFH) suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. The problem formulation for the optimization is suggested to improve the dynamic compliance of OFH and to shift the resonant frequencies caused tracking errors to high frequency domain. Furthermore, the minimization of the effective suspension mass that leads to decrease the so-called 'lift-off' as the disk-head separation acceleration divided by the suspension load is taken into consideration. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. The advanced suspension that reduces the effective mass of the suspension and increases the resonant frequencies of sway and $2^{nd}$ torsion over 10kHz is achieved by using the integrated optimization frame.

  • PDF

Dual-Band Filter Using Heterogeneous Resonators (이종 공진기를 이용한 이중 대역 통과 필터)

  • Kim, Kyoung-Keun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.253-261
    • /
    • 2010
  • In this paper, the design and the fabrication of dual bandpass filter using heterogeneous resonators is presented. Each resonator would not have an effect on each resonant frequency. Two types of resonators are designed to have different fundamental resonant frequencies, one for the lower passband and the other for the upper passband. In the lower band, half and quarter wavelength resonators were used. In the upper band, a dual-mode resonator was used for adjusting bandwidth. In the upper pass band frequency, resonators of lower passband acts as the input and output. For WLAN, Proposed filters with different second passband frequencies at 2.45/5.2 GHz and 2.45/5.8 GHz are designed and fabricated.

A Study on Combustion-Driven Oscillations in a Surface Burner (표면연소기의 연소진동음에 관한 연구)

  • Han, Heekab;Kwon, Youngpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1582-1590
    • /
    • 1998
  • Combustion-driven oscillations in a surface burner have been investigated to clarify their characteristics. A model combustor is made and the oscillation frequencies are measured for various dimensions of the combustor. It is found that there are two modes of oscillations; one is the 'acoustic mode' at high frequencies, associated with the acoustic mode of the combustion system and the other is the 'combustion mode' at low frequencies around 100 Hz, associated with the instability of the flame. Acoustic mode is excited when the surface burner is placed where the phase of particle velocity leads that of acoustic pressure by $90^{\circ}$, for all the combustion conditions. Combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. Combustion mode is greatly influenced by the inlet temperature of the premixed gas. When the inlet temperature is very high, the combustion mode does not occur.

Analysis of the Nonlinear Motions of a Tension Leg Platform in Time Domain (시간영역에서 인장계류식 해양구조물의 비선형 운동응답 해석)

  • 이창호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.313-320
    • /
    • 2001
  • In the presence of incident waves with different frequencies, there are second order sum and difference frequency wane exciting forces due to the nonlinearty of the incident waves. Although the magnitudes of these nonlinear forces are small, they act at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency wane loads occurring close to the natural frequencies of TLPs often give greater contributions to high and low frequency resonant responses. The components of the second order forces which depend on first order quantities have been evaluated using the three dimensional source distribution method. The numerical results of time domain motion analysis for the nonlinear wave exciting forces in regular waves are compared with the numerical ones of frequency domain analysis. The results of comparison confirmed the validity of the proposed approach.

  • PDF

A Dual frequency Monopole Antenna using CPW Feed Line (코프래너 급전 이중 주파수 모노폴 안테나)

  • Kim, Joon-Il;Choi, Soon-Shin;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.47-54
    • /
    • 2005
  • The design method for a dual frequency antenna using CPW feed lines is presented. The antenna structures can be simplified by CPW feed lines and easily designed on integrated circuits. The presented antenna has two resonant frequency ranges and each respective resonant frequency is determined by its own length of monopole antenna. We used an impedance matching method by using a monopole coupling related to the ground of CPW feed lines As a result, the resonant frequencies were 5.25[GHz] and 23.5[GHz] and their bandwidths $35.2\%,\;and\;41.3\%$, respectively, and also, the separation of the two frequencies $370\;%$. We presented an analytical designing method to implement a dual frequency monopole antenna and showed simple antenna structures having two frequency ranges for RFIC Integrations.

Automatic Eggshell Crack Detection System for Egg Grading (계란 등급판정을 위한 파각란 자동 검사 시스템)

  • Choi, Wan-Kyu;Lee, Kang-Jin;Son, Jae-Ryong;Kang, Suk-Won;Lee, Ho-Young
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.348-354
    • /
    • 2008
  • Egg grading is determined by exterior and interior quality. Among the evaluation methods for the egg quality, a candling method is common to identify eggs with cracked shells and interior defects. But this method is time-consuming and laborious. In addition, practically, it is challenging to detect hairline and micro cracks. In this study, an on-line inspection system based on acoustic resonance frequency analysis was developed to detect hairline cracks on eggshells. A roller conveyor was used to transfer eggs along one lane to the impact position where each of eggs rotated by the roller was excited with an impact device at four different locations on the eggshell equator. The impact device was consisted of a plastic hammer and a rotary solenoid. The acoustic response of the egg to the impact was measured with a small condenser microphone at the same position as the impact device was installed. Two acoustic parameters, correlation coefficient for normalized power spectra and standard deviation of peak resonant frequencies, were used to detect cracked eggs. Intact eggs showed relatively high correlations among the four normalized power spectra and low standard deviations of the four peak resonant frequencies. On the other hand, cracked eggs showed low correlations and high standard deviations as compared to the intact. This method allowed a crack detection rate of 97.6%.

Flexible Microfluidic Metamaterial Absorber for Remote Chemical Sensor Application (원격 화학 센서로 활용 가능한 플렉서블 미세유체 메타물질 흡수체)

  • Kim, Hyung Ki;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • In this paper, a novel flexible microfluidic metamaterial absorber is proposed for remote chemical sensor applications. The proposed metamaterial absorber consists of a periodic of split-ring-cross resonators(SRCRs) and a microfluidic channel. The SRCR patterns are inkjet-printed using silver nanoparticle inks on paper. The microfluidic channels are laser-etched on polydimethylsiloxane(PDMS) material. The proposed absorber can detect change of the effective permittivity at different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting change of the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results shows that the resonant frequency is 10.49 GHz at the empty channel. When ethanol and DI-water are injected into the channel, the resonant frequencies are 10.04 GHz and 8.9 GHz, respectively.

Design of Chipless RFID Tags Using Electric Field-Coupled Inductive-Capacitive Resonators (전계-결합 유도-용량성 공진기를 이용한 Chipless RFID 태그 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.530-535
    • /
    • 2021
  • In this paper, the design method for a chipless RFID tag using ELC resonators is proposed. A four-bit chipless RFID tag is designed in a two by two array configuration using three ELC resonators with different resonant peak frequencies and one compact IDC resonator. The resonant peak frequency of the bistatic RCS for the IDC resonator is 3.125 GHz, whereas those of the three ELC resonators are adjusted to be at 4.225 GHz, 4.825 GHz, and 5.240 GHz, respectively, by using the gap between the capacitor-shaped strips in the ELC resonator. The spacing between the resonators is 1 mm. Proposed four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. It is observed from experiment results that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.290 GHz, 4.295 GHz, 4.835 GHz, and 5.230 GHz, respectively, which is similar to the simulation results with errors in the range between -2.3% and 0.2%.

Vibration Analysis of Pears in Packaged Freight Using Finite Element Method (유한요소법을 이용한 골판지 포장화물내 배의 진동해석)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.501-507
    • /
    • 2004
  • Fruits we subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonant frequency. The determination of the resonant frequencies of the fruit may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. The vibration characteristics of the pears in corrugated fiberboard container in transit were analyzed using FEM (finite element method) modeling, and the FEM modeling approach was first validated by comparing the results obtained from simulation and experiment for the pear in the frequency range 3 to 150 Hz and acceleration level of 0.25 G-rms and it was found that between simulated and measured frequencies of the pears have a relatively good agreement. It was observed that the fruit and vegetables in corrugated fiberboard container could be analyzed by finite element method. As the elastic modulus of the cushion materials of corrugated fiberboard pad and tray cup decreased, the first frequencies of upper and lower pears increased and the peak acceleration decreased.

The Axial Vibration of Internal Combustion Engine Crankshaft (Part I.Calculation method of crankshaft axial stiffness and its natural frequencies) (내연기관크랭크축계 종진동에 관한 연구 (제1보: 크랭크축의 종진성계수와 종자유진동계산))

  • 전효중;김의관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.34-51
    • /
    • 1981
  • Lately, due to increasing engine output by high supercharging, heavy crankshaft and propeller mass, as well as long strokes attended with the reduced crankshaft axial stiffness, the critical crankshaft axial vibration has frequently appeared in maneuvering range of the engine. Some investigators have developed calculating methods of natural frequencies and resonant amplitudes for crankshaft axial vibrations. But their reliabilities are uncertain as the estimated crankshaft axial stiffness are incorrect. The calculating procedure of these natural frequencies is practically analogous to the classical calculation of torsional vibration frequencies, except for an important difference due to the relationship of the axial stiffness of a crank and the angle between the crank and other, especially the adjacent, cranks. In this paper, 6 calculation formulae of crankshaft axial stiffness already published and a theoretically- developed one by authors are checked by comparing their calculating results with those measured values of one model crankshafat and three full-scale actual crankshafts. Also, the calculating methods of the crankshaft axial free vibration are investigated and their computer programs are developed. Finally, those developed computer programs are applied to calculating one model crankshaft and two full-scale actual crankshafts of ship's propulsion engines and their calculated results are compared with those measured values.

  • PDF