• Title/Summary/Keyword: Resonant Scattering

Search Result 73, Processing Time 0.029 seconds

Dielectric Cylinder Optical Amplifier (원통형 유전체 광 증폭기에 대한 연구)

  • 이성수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.146-147
    • /
    • 2000
  • The electromagnetic wave scattering from active objects has only recently attracted attention.$^{(1).(3)}$ Theoretical studies have considered normal-incidence plane-wave interactions with active dielectric cylinders with the prediction of large enhancements in the scattered field for bound mode structures. According to the theory of the electromagnetic wave scattering from a dielectric cylinder, the eigenvector solutions are discrete and have both guided (non-radiative) and leaky (radiative) mode solutions. By using an anti-guiding (leaky) structure instead of a guided structure and scattering at oblique incident angles near critical angle, the scattering resonances predicted by theoretical studies were obtained for the first time. A fine-grained scan of the plane-wave incident angle a reveals the existence of discrete scattering resonances. The diameter and real part of the index of refraction determine the resonant conditions and the imaginary part of the refractive index has a threshold value to make mode up for its radiation loss. The cross coupling between transverse electric (TE) and transverse magnetic (TM) modes is clearly detected for both active and passive scattering as theoretically expected. (omitted)

  • PDF

Analysis of Modulus and Phase of Resonance Scattered Elastic Waves from Cylindrical Fluid Scatterers (원통형 유체 산란체에 의한 공명 산란 탄성파의 진폭 및 위상 해석)

  • 임현준;홍기석;김정태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.62-70
    • /
    • 2001
  • Based on the recently developed resonance scattering theory for elastic waves, a relationship between the stress components, which may be measured using ultrasonic transducers, of partial waves scattered from cylindrical fluid scatterer, cavity, and resonance scatterer has been derived. The computed resonance scattered stresses exhibit frequency behaviors similar to the corresponding scattering coefficients: particularly, abrupt changes in phase by 180°near the resonant frequencies. By studying the behavior of pressure in the fluid scatterer, the physics of the theory has been further understood. Using the method studied and developed in this paper, nondestructive characterization of fluid inclusions in elastic media is expected to become more reliable.

  • PDF

Understanding spin configuration in the geometrically frustrated magnet TbB4: A resonant soft X-ray scattering study

  • Huang, H.;Jang, H.;Kang, B.Y.;Cho, B.K.;Kao, C.C.;Liu, Y.J.;Lee, J.S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1205-1211
    • /
    • 2018
  • The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration (i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the $TbB_4$ compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon cooling down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Our results and their implications would further shed a light on the search for possible realization of QSL.

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.

Polarized Raman Spectroscopy of Graphene

  • Cheong, Hyeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.5-5
    • /
    • 2011
  • Raman spectroscopy has become one of the most widely used tools in graphene research. The resonant Raman scattering process that gives rise to the observed strong Raman signal carries information regarding the electronic structure as well as the structural properties. When polarization of the incident excitation laser light or the scattered signal is carefully controlled, more information on the electronic and structural properties becomes available. In this tutorial, the basics of polarized Raman scattering experiments will be introduced first. Then several examples from real research will be highlighted to illustrate the application of polarized Raman spectroscopy in graphene research.

  • PDF

Development of a Method for Characterizing Single-Fiber Composite Interphase from Frequency-Domain Characteristics of Ultrasonic Scattered Waves (산란 초음파의 주파수 특성을 이용한 단일 섬유 복합재료의 인터페이즈 평가법 개발)

  • Kim, Woong-Ki;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.100-109
    • /
    • 1999
  • A method is proposed to characterize single-fiber composite interphases from the frequency-domain characteristics of scattered ultrasonic waves, and its feasibility is investigated theoretically. It has been shown that the locations and magnitudes of the peaks and valleys in the frequency domain are affected significantly by the interphase properties, which may indicate the effectiveness of the proposed method. Although the frequency-domain behavior is basically associated with the resonance of the fiber-interphase system, it is not dominantly affected by the scatterer's resonance unlike that in the case of acoustic wave scattering. Therefore, the conventional acoustic resonant scattering theory is not directly applicable to the characterization of composite interphases. In order to solve the inverse problem of predicting the interphase properties from the frequency-domain characteristics of the ultrasonic scattered waves, an artificial neural network has been constructed. This approach has demonstrated reasonable accuracy in most cases considered in this study.

  • PDF

Mixing Effect by Tone-Excitation In Round Jet Diffusion Flame (원형분류확산화염에서의 음파가진에 의한 혼합효과)

  • Kim, Tae Kwon;Park, Jeong;Shin, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.795-801
    • /
    • 1999
  • An experimental investigation has been conducted with the objective of studying the mixing mechanism near the nozzle exit in a tone-excited jet diffusion flame. The fuel jet was pulsed by means of a loudspeaker-driven cavity. The excitation frequencies were chosen for the two cases of the non-resonant and resonant frequency identified as a fuel tube resonance due to acoustic excitation. The effect of tone-excitations on mixing pattern near the nozzle exit and flame was visualized using various techniques, including schlieren photograph and laser light scattering photograph from $TiO_2$ seed particles. In order to clarify the details of the flame feature observed by visualization methods, hotwire measurements have been made. Excitation at the resonant frequency makes strong mixing near the nozzle. In this case, the fuel jet flow in the vicinity of nozzle exit breaks up into disturbed fuel parcels. This phenomena affects greatly the combustion characteristics of the tone excited jet and presumably occurs by flow separation from the wall inside the fuel nozzle. As a result, in the resonant frequency the flame length reduces greatly.

Strongly Enhanced Electric Field Outside a Pit from Combined Nanostructure of Inverted Pyramidal Pits and Nanoparticles

  • Meng Wang;Wudeng Wang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.562-568
    • /
    • 2023
  • We designed a combined nanostructure of inverted pyramidal pits and nanoparticles, which can obtain much stronger field enhancement than traditional periodic pits or nanoparticles. The field enhancement |E|/|E0| is greater than 10 in a large area at 750-820 nm in incident wavelength. |Emax|/|E0| is greater than 60. Moreover, the hot spot is obtained outside the pits instead of localized inside them, which is beneficial for experiments such as surface-enhanced Raman scattering. The relations between resonant wavelength and structural parameters are investigated. The resonant wavelength shows a linear dependence on the structure's period, which provides a direct way to tune the resonant wavelength. The excitation of a propagating surface plasmon on the periodic structure's surface, a localized surface plasmon of nanoparticles, and a standing-wave effect contribute to the enhancement.