• Title/Summary/Keyword: Resonant Ignition

Search Result 23, Processing Time 0.017 seconds

The Ballast for HID Lamps of Preventing the Overvoltage with a Long Distance Resonant Ignition (원거리 공진 기동시 과전압 방지 HID 안정기)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.94-102
    • /
    • 2015
  • The electronic ballast for HID lamps needs to ignite lamps even though the length from the ballast to lamp is far away. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps because the reduction of ignition voltage is not much depending on the distance. However, the parasitic capacitance is increased depending the length of the cable, and it affects the resonant frequency. The ignitor voltage can be increased drastically under the resonant ignition through frequency sweep, and it is the main reason of blowing up. Therefore, the clamping diode is proposed to suppress the voltage of the primary winding during resonant ignition.

External Resonant Ignitior for HID Lamps by Using the Transformer (변압기를 이용한 외장형 HID 램프용 공진형 이그니터)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.9-16
    • /
    • 2014
  • The electronic ballast for HID lamps needs high ignition voltage which is consisted of high voltage pulse ignitor. However, In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. However, the resonant circuit which is consisted of LC occurs over current, so the capacity of the ignitor increases. The capacity of the ignitor can be reduced by using the transformer. In this case, the capacitor for resonance is installed to the secondary of the transformer, and the capacitor needs high withstanding voltage. Therefore, it needs to do the research on a resonant ignition to reduce the voltage over the resonant capacitor by dividing the secondary of the transformer.

Digital Control of Low-Frequency Square-Wave Two-Stage Electronic Ballast for HID Lamps with Resonant Ignition and High Efficiency (공진 점등 기능과 효율 향상을 위한 HID 램프의 저주파수 구형파 2단 전자식 안정기)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2013
  • In this paper, electronic ballast using resonant inverter for HID lamp is designed and implemented. The proposed electronic ballast is used the soft switching technology ZVS(Zero Voltage Switching) to reduce turn-on and turn-off loss. The ignition of proposed electronic ballast is achieved by controlling a full bridge inverter which is consisted of LC filter for resonance. After ignition the ballast operates as a low frequency square wave inverter by controlling a full bridge inverter as a buck converter. After ignition at resonant frequency of $f_o$=160kHz, the switching frequency of a buck converter is consisted of 50kHz of high frequency and 170Hz of low frequency. This is for attenuating high frequency harmonics and avoiding acoustic resonance. The experimental results show that electronic ballast using resonant inverter is operated stably.

Transient Current Control of Two-Stage Electronics Ballast for HID Lamps (HID 램프용 Two-Stage 전자식 안정기의 과도 전류 제어)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

Analysis of Electromagnetic Wave for Spark Plug Cable in Distributorless Spark Ignition System (무배전기식 불꽃 점화 시스템의 점화 플러그 케이블에서 발생되는 전자파의 분석)

  • Kang, Sang-Won;Choe, Gwang-Je;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • It is an analysis about electromagnetic wave which is generated from a Spark plug cable of Distributorless spark ignition system. In case of Distributorless spark ignition system, high frequency generation is an ignition coil and Spark plug cable and Spark plug could be activated with electromagnetic wave radiation antenna. I calculated a resonant frequency with HFSS by measuring length of Spark plug cable and Spark plug. The antenna was considered as ${\lambda}/4$ monopole antenna in this calculation. According to power spectrum measurement analysis of engine room radiated electromagnetic wave and calculated Resonant frequency, it is possible to find out that the Distributorless spark ignition system radiates high frequency energy in certain frequency band.

Numerical investigation for performance prediction of gas dynamic resonant igniters

  • Conte, Antonietta;Ferrero, Andrea;Pastrone, Dario
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.425-440
    • /
    • 2020
  • The work presented herein is a numerical investigation of the flow field inside a resonant igniter, with the aim of predicting the performances in terms of cavity temperature and noise spectrum. A resonance ignition system represens an attractive solution for the ignition of liquid rocket engines in space missions which require multiple engine re-ignitions, like for example debris removal. Furthermore, the current trend in avoiding toxic propellants leads to the adoption of green propellant which does not show hypergolic properties and so the presence of a reliable ignition system becomes fundamental. Resonant igniters are attractive for in-space thrusters due to the low weight and the absence of an electric power source. However, their performances are strongly influenced by several geometrical and environmental parameters. This motivates the study proposed in this work in which the flow field inside a resonant igniter is numerically investigated. The unsteady compressible Reynolds Averaged Navier-Stokes equations are solved by means of a finite volume scheme and the effects of several wall boundary conditions are investigated (adiabatic, isothermal, radiating). The results are compared with some available experimental data in terms of cavity temperature and noise spectrum.

Digital Control of Two-Stage Electronic ballast for HID Lamps (2-단계 HID 램프용 전자식 안정기의 디지털 제어)

  • Lee, Woo cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.229-230
    • /
    • 2013
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

  • PDF

Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torches

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.591-598
    • /
    • 2011
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torches. A series resonant half-bridge topology is presented as a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. A plasma torch rated at 3MW, 2kA and having a physical size of 1m is selected to be the high enthalpy source for a waste disposal system. The steady-state and transient operations of a plasma torch are simulated. The parameters of a Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. The circuit simulation waveform shows that the ripple of the arc current can be maintained within ${\pm}10%$ of its rated value under the presence of a load disturbance. This power conversion configuration provides a high enough ignition voltage, around 5KA, during the ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.

A Study on Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torch

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.242-243
    • /
    • 2010
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torch. Series resonant half-bridge topology is presented to be a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. The plasma torch rated for 3MW, 2kA and having the physical size of 1m long is selected to be a high enthalpy source in waste disposal system. The steady-state and transient operations of plasma torch are simulated. The parameters of Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. Circuit simulation waveform shows that the ripple of arc current can be maintained within ${\pm}10%$ of its rated value under the existence of load disturbance. This power conversion configuration provides high enough ignition voltage around 5KA during ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.

  • PDF

A New Optimal Design Method of the Electronic Ballast for MHL with Stable Run-up Current (시동전류 제한을 통한 메탈헬라이드 램프용 안정기의 최적 설계)

  • Lim, Byoung-Loh;Jang, Mog-Soon;Lim, Ki-Seung;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.409-415
    • /
    • 2008
  • This paper proposed a new optimal design method of the electronic ballast with stable run-up current for Metal Halide lamp during the ignition condition. In order to avoid operation in the acoustic resonance frequency band and to supply the optimal ignition current without demage of inverter switching components during the ignition period, the values of the series inductor Ls, the series capacitor Cs, and the parallel capacitor Cp were determined by analysis of characteristics of inverter transfer function depend on Lamp operating power and resistance of ignition condition and steady state operating condition. For the prototype ballast for a 400W Metal Halide Lamp, experimental results are presented in order to validate the proposed method.