• Title/Summary/Keyword: Resonance power buoy

Search Result 22, Processing Time 0.027 seconds

Latching Control Technology for Improvement of Extracted Power from Wave Energy Converter (파력발전기 추출파워 향상을 위한 래칭 제어기법)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.282-290
    • /
    • 2015
  • In this study, a latching control technology, proposed by Sheng et al.(2015), was applied in order to maximize the extraction efficiency of WEC (Wave Energy Converter), which is the heaving buoy coupled with linear electric generator. The latching control is the phase-control technique for improving the wave energy conversion with appropriate latching duration of keeping the buoy fixed. From the time-domain analysis in regular waves, the latching control technology can significantly improve the heave velocity and extracted power, even though the resonance condition is not satisfied. By using the latching control technology, the draft of buoy as well as the required PTO damping force can be significantly reduced along with increased extracted power, which is a big advantage in manufacturing the WEC.

Power Estimation and Optimum Design of a Buoy for the Resonant Type Wave Energy Converter Using Approximation Scheme (근사기법을 활용한 공진형 파력발전 부이의 발전량 추정 및 최적설계)

  • Koh, Hyeok-Jun;Ruy, Won-Sun;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • This paper deals with the resonant type of a WEC (wave energy converter) and the determination method of its geometric parameters which were obtained to construct the robust and optimal structure, respectively. In detail, the optimization problem is formulated with the constraints composed of the response surfaces which stand for the resonance period(heave, pitch) and the meta center height of the buoy. Use of a signal-to-noise ratio calculated from normalized multi-objective results with the weight factor can help to select the robust design level. In order to get the sample data set, the motion responses of the power buoy were analyzed using the BEM (boundary element method)-based commercial code. Also, the optimization result is compared with a robust design for a feasibility study. Finally, the power efficiency of the WEC with the optimum design variables is estimated as the captured wave ratio resulting from absorbed power which mainly related to PTO (power take off) damping. It could be said that the resultant of the WEC design is the economical optimal design which satisfy the given constraints.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.

A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

  • Kweon, Hyuck-Min;Cho, Hong-Yeon;Cho, II-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.813-825
    • /
    • 2014
  • To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

Design of the dual-buoy wave energy converter based on actual wave data of East Sea

  • Kim, Jeongrok;Kweon, Hyuck-Min;Jeong, Weon-Mu;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.739-749
    • /
    • 2015
  • A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: $36.404N^{\circ}$ and $129.274E^{\circ}$) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

The Research of Vibration Power Generation with Two Degree of Freedom Using Ocean Wave (파도를 이용한 2자유도 파력진동발전시스템에 대한 연구)

  • Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1028-1034
    • /
    • 2011
  • This paper have been studied that ocean wave power vibration generation system with two D.O.F.(degree of freedom) consists of buoy and vibration generation system with two D.O.F. for using efficiency of ocean wave energy. It selected main frequencies ${\omega}_1$, ${\omega}_2$ in frequency with ocean wave and it fitted them to the natural frequencies of vibration system with two D.O.F. in the vibrational power generation system. Then each the relative velocity of between the winding coil and the permanent magnet is faster than the velocity of ocean wave up and down motion by resonance phenomenon. Also the ocean wave power generation with two D.O.F. obtained the more electric energy then the ocean wave power generation with one D.O.F. by coupling effect for two D.O.F. vibration system. Therefore ocean wave power vibration generation system with two degree of freedom that is proposed in this paper has merits which not only using more energy in the ocean wave but also obtaining more electronic energy.

Performance Evaluation of an Axisymmetric Floating Wave Power Device with an Oscillating Water Column in the Vertical Cylinder (진동 수주형 축대칭 부유식 파력발전장치의 성능평가)

  • Park, Woo-Sun;Jeong, Shin Taek;Choi, Hyukjin;Lee, Uk Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • In order to evaluate the performance of the floating wave power, which is an axisymmetric oscillating water column type, linearized free surface boundary condition considering the influence of PTO (power takeoff) was derived and a finite element numerical model was established. Numerical experiments were carried out by varying cylinder length, skirt length, and depth of water, which are design parameters that can change the resonance of water column in cylinder and heave resonance of the float, which is considered to affect the power generation efficiency. Finally, the basic data necessary for the optimum design of the power generation system were obtained. As a result, the efficiency of the power generation system is dominated by the heave motion resonance of the float rather than the water column resonance in the cylinder, and the resonance condition for the heave motion can be changed efficiently by attaching the skirt to the outside of the buoy.

Wave Power Extraction by Strip Array of Multiple Buoys (스트립 배열된 다수 부이에 의한 파력에너지 추출)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.474-483
    • /
    • 2014
  • The majority of existing WECs (wave energy converters) are designed to achieve maximum power at a resonance condition. In the case of a single WEC, its size must be large enough for tuning, and it has high efficiency only within a limited frequency band. Recently, wave power extraction by deploying many small buoys in a compact array has been studied under the assumption that the buoy's size and separation distance are much smaller than the water depth, wave length, and size of the array. A boundary value problem involving the macro-scale boundary condition on the mean surface covered by an infinite strip of buoys is solved using the eigenfunction expansion method. The energy extraction efficiency (${\varepsilon}=1-R^2_f-T^2_r$), where $R_f$ and $T_r$ are the reflection and transmission coefficients for a strip array of buoys, is assessed for various combinations of packing ratio, strip width, and PTO damping coefficient.

Design of Wave Energy Extractor with a Linear Electric Generator -Part I. Design of a Wave Power Buoy (선형발전기가 탑재된 파랑에너지 추출장치 설계 -I. 파력 부이 설계)

  • Kim, Jeong Rok;Bae, Yoon Hyeok;Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • Design procedure of WEC (wave energy converter) using the heaving motion of a floating cylinder-type buoy coupled with LEG (linear electric generator) system is introduced. It is seen that the maximum power can actually be obtained at the optimal conditions ($c_{PTO}=b_T$, ${\omega}={\omega}_N$). Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO (power take off), which includes the intentional mismatching with the heave natural frequency, which is 15% higher value than the peak frequency of input velocity spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the corresponding draft as well as the required PTO damping value is significantly reduced, which is a big advantage in manufacturing the WEC with practical LEG (linear electric generator) system.

Extraction of Wave Energy Using the Coupled Heaving Motion of a Circular Cylinder and Linear Electric Generator (원기둥과 선형발전기의 연성 수직운동을 이용한 파 에너지 추출)

  • Cho, Il-Hyoung;Kweon, Hyuck-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.9-16
    • /
    • 2011
  • The feasibility of wave energy extraction from a heaving truncated cylinder and the corresponding response of the linear electric generator (LEG) composed of spring, magnet, and coil has been investigated in the frame of three-dimensional linear potential theory. The heaving motion of a circular cylinder is calculated by means of the matched eigenfunction expansion method. Further, the analytical results are validated by numerical results using the ANSYS AQWA commercial code. By the action of a heaving circular cylinder, the magnet suspended by a spring can slide vertically inside the heaving cylinder. The mechanical power is extracted from the magnet motion relative to the coil/stator which is attached to the cylinder. The coupled ODE of a heaving cylinder and LEG system in waves is derived to obtain the magnet motion relative to a cylinder. To maximize the relative motion of the magnet, both the buoy draft and the LEG system parameters (spring stiffness, damping) should be selected properly for generating the double resonance considering the peak frequency of the target spectrum.