• Title/Summary/Keyword: Resonance mode

Search Result 807, Processing Time 0.033 seconds

Irradiation Induced Defects in a Si-doped GaN Single Crystal by Neutron Irradiation

  • Park, Il-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing electron magnetic resonance(EMR), Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of $2{\times}10^{17}$ neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, $A_1$(TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much broader or was much more broadened than that for the unirradiated one. The observed EMR center with the g value of 1.952 in a neutron irradiated Si-doped GaN may be assigned to a Si-related complex donor.

Characteristics of Rotational Vibration of Cutting Edge in Elliptical Vibration Cutting by Modulation of Excitation Frequency (타원궤적 절삭기의 가진주파수에 따른 절삭 날 회전 진동 특성)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.258-263
    • /
    • 2011
  • The direction of the cutting tool plays a critical role in elliptical vibration cutting(EVC) where the cutting tool cuts workpiece in a trochoidal motion. In this study, EVC cutting device was developed using two parallel piezoelectric materials and it was observed that the rotation direction of the tool reverses as the EVC device undergoes resonance at which either flexural(cutting direction) or longitudinal( thrust direction) mode shapes occurs. To analytically explain reversal of the rotation direction, kinematic motion analysis of the tool was modified to incorporate amplification of the vibration amplitude and phase introduced by resonance. It successfully demonstrated, through Matlab simulation, reversal of the rotation direction of the cutting tool as the excitation frequency increases beyond resonance frequencies at which either flexural or longitudinal vibration occurs.

Vibration reduction of the Engine Casing "B" deck in the handymax vessel (Handymax 급 PC 선 Engine Casing "B" deck 의 진동 저감)

  • Seo, Myung-Gab;Jeong, Tae-Seok;Seok, Ho-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.498-503
    • /
    • 2009
  • This paper presents the vibration problem of the Engine Casing (E/C) "B" deck in the handymax vessel and describes a method to avoid resonance. The first ship of the series did not have any vibration issue on the "B" deck. However, resonance condition occurred when additional machine was installed to the following vessels. To understand the dynamic characteristics of the deck, the normal mode analysis and impact test have been performed. Within the normal operating range of the vessel, the $1^{st}$ natural frequency of the E/C "B" deck is close to the main engine's $6^{th}$ order. Based on these analysis, a reinforcement on the deck was suggested and it proved to be effective. Since actual impact test after the reinforcement also confirmed the resonance avoidance.

  • PDF

SOUND AND VIBRATION STUDY OF ROTARY COMPRESSOR (로터리 콤프레셔의 소음 진동 연구)

  • 박종찬;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.973-978
    • /
    • 2001
  • Noise reduction has become a major issue of the manufacturing industry. This paper describes the reduction of noise and vibration of rotary compressors. Empirical design for the present strap of the accumulator has been considered to be sufficient for the constraint of the accumulator resonance modes without thorough study. Recently, however, some researchers found out that the accumulator contributes considerably to the sound propagation. In this paper, the contribution of accumulator to the noise propagation is investigated through sound measuring experiments by checking the directivity of the noise. And, experimental modal analysis results show that frequencies of some resonance modes of the accumulator coincide with the highest peaks on sound spectrum. To demonstrate the reason for those resonance modes, a finite element analysis is conducted. Normal mode analysis of the finite element model of the rotary compressor shows the mechanism of the accumulator resonance modes.

  • PDF

A study on the design optimization of baseframe to avoid resonance of diesel generator set (발전기세트 공진 회피를 위한 베이스프레임 최적설계에 관한 연구)

  • Jeong, S.H.;Kwak, Y.S.;Kim, W.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.157-162
    • /
    • 2012
  • A structural modification of baseframe is an effective method to avoid resonance in marine diesel generator (D/G) set which consists of diesel engine, generator and baseframe. However the reinforcement with thick plates or additional parts to increase the natural frequency can be less effective because of increased weight. Especially fine control of target mode based on the experience is difficult because the weight and interference of system have to be considered. In this paper, the design optimization of baseframe was performed to reduce the resonant vibration using a gradient descent method. The design parameters such as thickness, shape and location of baseframe parts are optimized to increase the torsional natural frequency of D/G set. From the actual test, the new designed baseframe reduced the vibration level in resonance by 55% without any increase of weight and interference. interference.

  • PDF

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam (원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상)

  • Park Chul-Hui;Cho Chongdu;Kim Myoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

Nonlinear Oscillation Characteristics in Combination Resonance Region Considering Damping Effects (조합공진 영역에서 감쇠의 영향을 고려한 비선형 진동 응답 특성)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.849-855
    • /
    • 2010
  • Damping may change the response characteristics of nonlinear oscillations due to the parametric excitation of a thin cantilever beam. When the natural frequencies of the first bending and torsional modes are of the same order of magnitude, we can observe the one-to-one combination resonance in the perturbation analysis depending on the characteristic parameters. The nonlinear behavior about the combination resonance reveals a chaotic motion depending on the natural frequencies and damping ratio. We can analyze the chaotic dynamics by using the eigenvalue analysis of the perturbed components. In this paper, we derived the equations for autonomous system and solved them to obtain the characteristic equation. The stability analysis was carried out by examining the eigenvalues. Numerical integration gave the physical behavior of each mode for given parameters.

A Study on The Driving Characteristics of Ultrasonic Linear Motor Using Symmetric And Anti-Symmetirc Resonance Modes (대칭-비대칭 공진모드를 이용한 초음파 리니어 모터의 구동특성 연구)

  • Choi, Myeong-Il;Bae, Seok-Myeong;Park, Tae-Gone
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1962-1966
    • /
    • 2007
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric resonance modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer. The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

Background Coefficients in Resonance Scattering Theory for Spherical Dielectric Objects (투과성 구형 산란체에 대한 전자기파 공진산란이론의 배경성분)

  • Jung Younghwa;Jeon Sangbong;Ahn Chang-Hoi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.8
    • /
    • pp.384-389
    • /
    • 2005
  • The Resonance Scattering Theory(RST) provides the physical explanation of the scattered field that appears in the vicinity of the resonance frequency. The theory suggests that the amplitude of each Partial-wave mode can be divided into two components : resonance and non-resonant background. The long-standing difficulty in the application of RST is that it always requires background components. We have applied the RST to the electromagnetic scattering problems by a penetrable spherical scatterer and a cavity. In this paper, we show some numerical results, and validate background coefficients.

Measurement of Optical Properties of a Liquid Based on a Side-polished Optical Fiber (측면 연마 광섬유를 이용한 용액의 광학 특성 측정)

  • Lee, Hyeon Jin;Kim, Kwang Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.195-198
    • /
    • 2014
  • In this paper, a measurement method to obtain the optical properties of a liquid base on a side-polished single mode fiber was proposed and demonstrated. The device showed periodic resonance coupling against wavelengths. The refractive index and dispersion characteristics of a liquid were calculated by use of the spacings of periodic resonance wavelengths of the device. The thermo-optic coefficient of the liquid was obtained by monitering the shift of resonance wavelengths of the devices with change of environmental temperature.