• Title/Summary/Keyword: Resonance Parameters

Search Result 752, Processing Time 0.025 seconds

MR Findings of Seizure-Related Cerebral Cortical Lesions during Periictal Period

  • Kim, Na Yoon;Baek, Hye Jin;Choi, Dae Seob;Ha, Jee Young;Shin, Hwa Seon;Kim, Ju Ho;Choi, Ho Cheol;Kim, Ji Eun;Park, Mi Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.82-90
    • /
    • 2017
  • Purpose: This study investigated the MRI, MR angiography (MRA) and MR perfusion findings of seizure-related cerebral cortical lesions during the periictal period. Materials and Methods: From a retrospective review of the institutional database between 2011 and 2014, a total of 21 patients were included in this study. Two radiologists assessed periictal MRI, including MRA and MR perfusion, in patients with seizure-related cortical lesions. The parameters examined include: location of cortical abnormality, multiplicity of the affected cortical region, cerebral vascular dilatation, perfusion abnormality and other parenchymal lesions. Results: All patients showed T2 hyperintense cerebral cortical lesions with accompanying diffusion restriction, either unilateral (18/21, 85.7%) or bilateral (3/21, 14.3%). Of the 21 patients enrolled, 10 (47.6%) had concurrent T2 hyperintense thalamic lesions, and 10 (47.6%) showed hippocampal involvement. Of the 17 patients (81%) who underwent MRA, 13 (76.5%) showed vascular dilatation with increased flow signal in the cerebral arteries of the affected cortical regions. On MR perfusion, all 5 patients showed cortical hyperperfusion, corresponding to the region of cortical abnormalities. Conclusion: Seizure-related cerebral cortical lesions are characterized by T2 and diffusion hyperintensities, with corresponding cerebral hyperperfusion and vascular dilatation. These findings can be helpful for making an accurate diagnosis in patients with seizure.

A Case Study on the Reduction of Noise and Vibration at the Backpass Heat Surface in the Power Plant Boiler (발전용 보일러 후부 전열면 소음진동 저감에 관한 연구)

  • Lee, Gyong-Soon;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.54-59
    • /
    • 2008
  • The resonance of boiler is caused by exciting force in the gas path and it generates the vibration by the harmony of boiler's dimensional factor. According to trending toward the boiler of increasing capacity and a bigger size, it has a problem of the vibration at back-pass heating surfaces. We can predict such vibrations as comparison between vortex frequency and gas column's natural frequency. We can't rely on the method for the past decades because of changing parameters, such as an allowable error, gas temperature, gas velocity, Strouhal number. We can reduce the vibration to use the seasoning effect and change the operating condition in coal fired boiler but it's not essential solution. When the vibration occurred in the model boiler, we must measures the acoustic pressure and frequency of places for considering the means. So far, we confirmed the problem from field measures and theoretical analysis about the acoustic vibration of boiler. We installed anti-acoustic baffle in a existing boiler to change the acoustic natural frequency at the cavity, which results in reducing the acoustic vibration. The first, we prove that the acoustic resonance is caused by harmonizing vortex shedding frequency of tube heat surface with acoustic natural frequency of cavity in the range of 650~750 MW loads. The second, the acoustic resonance at the back-pass heating surface has the third order of acoustic natural frequency at the second economizer. We install five anti-acoustic baffles at the second economizer to reducing the resonance. We confirm considerably reducing the acoustic vibration of boiler during the commercial boiler.

  • PDF

Detection of Micro-Crack Using a Nonlinear Ultrasonic Resonance Parameters (비선형 초음파공명 특성을 이용한 미세균열 탐지)

  • Cheong, Yong-Moo;Lee, Deok-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2012
  • In order to overcome the detection limit by the current nondestructive evaluation technology, a nonlinear resonant ultrasound spectroscopy(NRUS) technique was applied for detection of micro-scale cracks in a material. A down-shift of the resonance frequency and a variation of normalized amplitude of the resonance pattern were suggested as the nonlinear parameter for detection of micro-scale cracks in a materials. A natural-like crack were produced in a standard compact tension(CT) specimen by a low cycle fatigue test and the resonance patterns were acquired in each fatigue step. As the exciting voltage increases, a down-shift of resonance frequency were increases as well as the normalized amplitude decrease. This nonlinear effects were significant and even greater in the cracked specimen, but not observed in a intact specimen.

Assessment of Left Ventricular Function with Single Breath-Hold Magnetic Resonance Cine Imaging in Patients with Arrhythmia

  • Bak, So Hyeon;Kim, Sung Mok;Park, Sung-Ji;Kim, Min-Ji;Choe, Yeon Hyeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2017
  • Purpose: To evaluate quantification results of single breath-hold (SBH) magnetic resonance (MR) cine imaging compared to results of conventional multiple breath-hold (MBH) technique for left ventricular (LV) function in patients with cardiac arrhythmia. Materials and Methods: MR images of patients with arrhythmia who underwent MBH and SBH cine imaging at the same time on a 1.5T MR scanner were retrospectively reviewed. Both SBH and MBH cine imaging were performed with balanced steady state free precession. SBH scans were acquired using temporal parallel acquisition technique (TPAT). Fifty patients ($65.4{\pm}12.3years$, 72% men) were included. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), myocardial mass, and LV regional wall motion were evaluated. Results: EF, myocardial mass, and regional wall motion were not significantly different between SBH and MBH acquisition techniques (all P-values > 0.05). EDV, ESV, and SV were significant difference between the two techniques. These parameters for SBH cine imaging with TPAT tended to lower than those in MBH. EF and myocardial mass of SBH cine imaging with TPAT showed good correlation with values of MBH cine imaging in Passing-Bablok regression charts and Bland-Altman plots. However, SBH imaging required significantly shorter acquisition time than MBH cine imaging ($15{\pm}7sec$ vs. $293{\pm}104sec$, P < 0.001). Conclusion: SBH cine imaging with TPAT permits shorter acquisition time with assessment results of global and regional LV function comparable to those with MBH cine imaging in patients with arrhythmia.

Optimization of Scan Parameters for in vivo Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging

  • Nguyen, Nguyen Trong;Rasanjala, Onila N.M.D.;Park, Ilwoo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the change in signal sensitivity over different acquisition start times and optimize the scanning window to provide the maximal signal sensitivity of [1-13C]pyruvate and its metabolic products, lactate and alanine, using spatially localized hyperpolarized 3D 13C magnetic resonance spectroscopic imaging (MRSI). Materials and Methods: We acquired 3D 13C MRSI data from the brain (n = 3), kidney (n = 3), and liver (n = 3) of rats using a 3T clinical scanner and a custom RF coil after the injection of hyperpolarized [1-13C]pyruvate. For each organ, we obtained three consecutive 3D 13C MRSI datasets with different acquisition start times per animal from a total of three animals. The mean signal-to-noise ratios (SNRs) of pyruvate, lactate, and alanine were calculated and compared between different acquisition start times. Based on the SNRs of lactate and alanine, we identified the optimal acquisition start timing for each organ. Results: For the brain, the acquisition start time of 18 s provided the highest mean SNR of lactate. At 18 s, however, the lactate signal predominantly originated from not the brain, but the blood vessels; therefore, the acquisition start time of 22 s was recommended for 3D 13C MRSI of the rat brain. For the kidney, all three metabolites demonstrated the highest mean SNR at the acquisition start time of 32 s. Similarly, the acquisition start time of 22 s provided the highest SNRs for all three metabolites in the liver. Conclusion: In this study, the acquisition start timing was optimized in an attempt to maximize metabolic signals in hyperpolarized 3D 13C MRSI examination with [1-13C] pyruvate as a substrate. We investigated the changes in metabolic signal sensitivity in the brain, kidney, and liver of rats to establish the optimal acquisition start time for each organ. We expect the results from this study to be of help in future studies.

Dynamic Susceptibility Contrast (DSC) Perfusion MR in the Prediction of Long-Term Survival of Glioblastomas (GBM): Correlation with MGMT Promoter Methylation and 1p/19q Deletions

  • Kwon, Yong Wonn;Moon, Won-Jin;Park, Mina;Roh, Hong Gee;Koh, Young Cho;Song, Sang Woo;Choi, Jin Woo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.3
    • /
    • pp.158-167
    • /
    • 2018
  • Purpose: To investigate the surgical, perfusion, and molecular characteristics of glioblastomas which influence long-term survival after treatment, and to explore the association between MR perfusion parameters and the presence of MGMT methylation and 1p/19q deletions. Materials and Methods: This retrospective study was approved by our institutional review board. A total 43 patients were included, all with pathologic diagnosis of glioblastoma with known MGMT methylation and 1p/19q deletion statuses. We divided these patients into long-term (${\geq}60\;months$, n = 7) and short-term (< 60 months, n = 36) survivors, then compared surgical extent, molecular status, and rCBV parameters between the two groups using Fisher's exact test or Mann-Whitney test. The rCBV parameters were analyzed according to the presence of MGMT methylation and 1p/19q deletions. We investigated the relationship between the mean rCBV and overall survival using linear correlation. Multivariable linear regression was performed in order to find the variables related to overall survival. Results: Long-term survivors (100% [7 of 7]) demonstrated a greater percentage of gross total or near total resection than short-term survivors (54.5% [18 of 33]). A higher prevalence of 1p/19q deletions was also noted among the long-term survivors (42.9% [3 of 7]) than the short-term survivors (0.0% [0 of 36]). The rCBV parameters did not differ between the long-term and short-term survivors. The rCBV values were marginally lower in patients with MGMT methylation and 1p/19q deletions. Despite no correlation found between overall survival and rCBV in the whole group, the short-term survivor group showed negative correlation ($R^2=0.181$, P = 0.025). Multivariable linear regression revealed that surgical extent and 1p/19q deletions, but not rCBV values, were associated with prolonged overall survival. Conclusion: While preoperative rCBV and 1p/19q deletion status are related to each other, only surgical extent and the presence of 1p/19q deletion in GBM patients may predict long-term survival.

Friction tuned mass damper optimization for structure under harmonic force excitation

  • Nasr, Aymen;Mrad, Charfeddine;Nasri, Rachid
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • In this work, an optimization method of Friction Tuned Mass Damper (FTMD) parameters is presented. Friction tuned mass dampers (FTMD) are attached to mechanical structures to reduce their vibrations with dissipating the vibratory energy through friction between both bodies. In order to exploit the performances of FTMD, the determination of the optimum parameters is recommended. However, the presence of Coulomb's friction force requires the resolution of a non-linear stick-slip problem. First, this work aims at determining the responses of the vibratory system. The responses of the main mass and of the FTMD are determined analytically in the sticking and sliding phase using the equivalent damping method. Second, this work aims to optimize the FTMD parameters; the friction coefficient and the tuned frequency. The optimization formulation based on the Ricciardelli and Vickery method at the resonance frequencies, this method is reformulated for a system with a viscous damping. The inverse problem of finding the FTMD parameters given the magnitude of the force and the maximum acceptable displacement of the primary system is also considered; the optimization of parameters leads to conclude on the favorable FTMD giving significant vibration decrease, and to advance design recommendations.

Experimental Model of Frequency-Variant Transmission Line Parameter for High-Speed Signal Propagation Characterization (고속 신호의 전파 특성화를 위한 주파수 종속 전송선 파라미터의 실험적 모델)

  • Kim, Hyewon;Eo, Yungseon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • In this paper, an experimental circuit model for an accurate high-frequency characterization of transmission line is proposed. Inherent resonance effects during measurements make it difficult to determine characteristic impedance and propagation constant at the resonance frequencies corresponding to the line length. Thus, resonance-effect-free transmission line parameter determination technique based on the physical insight and theory is proposed. Then, by using the parameters high-frequency circuit model is proposed for high-speed signal propagation characterization. The proposed frequency-variant transmission line model is verified with measurement and it can be usefully exploited in high-speed signal propagation characterization.

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

Structure Determination of Flavonoids Isolating from Nymphaea tetragona using NMR spectra and spin simulations

  • Kim, Yun Na;Lee, Su Jin;Jeong, Eun Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.3
    • /
    • pp.54-63
    • /
    • 2018
  • Nymphaea tetragona, also known as waterlilies, is aquatic plant in the family of Nymphaeceae. Three flavonoids(3, 4, and 5) and one mixed flavonoids were separated from this plant. The mixed flavonoid consisted of two flavonoids; a well-known quercetin(1) and a new natural flavonoid(2). The latter also has two chiral centers and their configurations were established by ROESY experiment. Two glycoflavonoids were determined as isoquercetin and quercetin-3-O-${\beta}$-xyropyranosyl-($1{\rightarrow}2$)-${\beta}$-galactopyroside. The $^1H$ NMR spectra for 4 and 5 dissoloved in $DMSO-d_6$ solvent showed resonance proximity and and severely overlap in the glycoside region, hindering the determination of the configurations of the stereogenic centers of the sugar moieties. This problem was solved through the spin simulation. Here, the exact NMR parameters for the sugar moieties of 4 and 5 were listed.