• Title/Summary/Keyword: Resonance Frequency Analysis

Search Result 981, Processing Time 0.032 seconds

Design and Evaluation of Osseointegration Analysis System for Dental Implant (치과 임플란트용 골융합 측정기의 설계 및 평가)

  • Lee, Joo-Hee;Kim, Chang-Il;Kim, Chul-Min;Paik, Jong-Hoo;Cho, Jeong-Ho;Chun, Myoung-Pyo;Jeong, Young-Hun;Lee, Jeong-Bae;Lee, Seung-Dae;Lee, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.295-295
    • /
    • 2010
  • 생체 식립형 임플란트의 경우 성공도는 매식체의 골유착 정도에 크게 영향을 받는다. 골유착 시 임플란트의 표면 형상과 하중, 골질의 양 등 많은 요인에 영향을 받게 되므로, 임플란트의 안정성을 주기적으로 점검해야할 필요가 있다. 따라서 임플란트 안정성을 공진 주파수 분석법을 이용하여 측정하기 위해 압전소자 제작과 트랜스듀서의 구조를 설계하였다. 유한요소 해석을 통하여 압전소자와 트랜스듀서의 두께와 크기 변화를 통해 측정 주파수 범위를 10kHz대역으로 맞추었으며, 해석 결과를 토대로 샘플제작과 평가를 실시하였다. 평가 결과 시뮬레이션 해석결과와 유사한 10kHz의 주파수 대역을 가지는 것을 볼 수 있었고, 식립된 나사의 고정도가 증가할수록 주파수가 점차 증가하는 결과를 얻을 수 있었다.

  • PDF

Induction Heating Device for Dental Implant Removal (인공치아의 임플란트 탈착을 위한 유도가열장치 연구)

  • Lee, Sang-Myung;Seo, Young;Song, Chang-Woo;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.305-311
    • /
    • 2016
  • Induction heating is the process in which an electrically conducting object (usually a metal) is heated by electromagnetic induction through heat generated in the object by eddy currents. The main advantage of an induction heating device is the generation of the heat inside the target object itself. Hence, non-contact and safe heating devices are widely used in many industrial and medical fields. Recently, a new dental implant system was developed using a shape-memory alloy, wherein an artificial tooth could be easily removed from the dental implant by heating. This paper discusses the development of an induction-heating device to remove the dental crown in the new implant system. First, the finite element simulation of electromagnetic and thermal coupling analysis was implemented to obtain the temperature distributions of the target object for various frequencies, input currents, and coil shapes. Based on the simulation results, experiments were conducted by using prototypes, and an induction heating device was developed to remove the dental crown from the implant.

Insertion Loss Characteristics of a Parallel Two-Wire Transmission Line with Equal Line Length Due to a Rectangular Aperture Sizes in Dual Ground Planes (두 개의 접지 평판 사각형 개구의 변화에 따른 평행 2선 전송 선로의 삽입 손실 특성)

  • Jung, Sung-Woo;Lim, Sung-Min;Jin, Jung-Hi;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.675-682
    • /
    • 2011
  • This paper presents two ground plane effects due to the size of two rectangular apertures for two-wire transmission line with equal line length crossing the changeable rectangular apertures in infinite ground planes. The CST MWS is used to determine the characteristics of the insertion loss of the transmission line from the load section in accordance with the ground plane aperture size. The results show that the insertion gain and the insertion loss are periodically observed for the multiple frequency of the half wavelength resonance by the wire length when the transmission line is nearby to horizontal side or vertical side of the aperture. The measurements of the insertion loss are performed to verify the theoretical analysis.

Design and Performance Evaluation of Carbon Fiber/Epoxy Composite-aluminum Hybrid Wheel for Passenger Cars (자동차용 탄소섬유/에폭시 복합재료-알루미늄 하이브리드 휠 설계 및 성능평가)

  • Hong, Jin-Ho;Yoo, Seong-Hwan;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.386-391
    • /
    • 2013
  • In this paper, a carbon fiber/epoxy composite-aluminum hybrid wheel for passenger cars was suggested for better performance and a prototype was fabricated and tested. Adhesive bonding between aluminum part and a composite rim part was used, and the bonding length and thickness were determined by finite element analysis. For self alignment and the function of bonding jig the special structure with a groove and a protrusion was applied. To evaluate the performance of the hybrid wheel various FE analyses were carried out. Inner and outer molds were prepared for the composite rim part and the thermoformed composite part was bonded to the aluminum part. Vibration tests revealed that the hybrid wheel had 16% higher resonance frequency and 32% higher damping capacity with 10% weight reduction.

A STUDY ON THE CORRELATION BETWEEN IMPLANT STABILITY VALUES AND INITIAL INSERTION TORQUE

  • Lee Jong-Hyuk;Yang Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.314-324
    • /
    • 2006
  • Statement of problem. Osseointegration is important mechanism of dental implant but it is not easy to evaluate. Indirect measurement is non-invasive and clinically applicable but they need more study about correlation between indirect values and degree of osseointegration. Purpose. The aims of this study were to evaluate the coefficient of correlation between indirect measurement and direct measurement under different healing time, and assessment of effect of initial insertion torque to the implant stability. Material and Methods. 20 rabbits received 3 implants on each side of tibia. Three kinds of implants (machined surface implant, Sandblasted with Large grit and Acid etched implant, Resorbable Blast Media treated implant) were used. During the surgery implant insertion torque were measured with $Osseocare^{TM}$. After the 1, 4, 8, 12 weeks of healing time, animals were sacrificed and stability values (Implant Stability Quotient with $Osstell^{TM}$, removal torque with torque gauge) were measured. Results. The Bone quality of rabbit tibia was classified into 2 groups according to the insertion torque. Resonance frequency analysis (ISQ) and removal torque showed positive correlation until $4^{th}$ week (r=0.555, p=0.040). After $8^{th}$ week (r=0.011, p=0.970) the correlation became weak and it turned negative at $12^{th}$ week (r=-0.074, p=0.801). Insertion torque and ISQ showed changing correlation upon the healing time ($1^{st}$ week: r=0.301, p=0.033, $4^{th}$ week: r=-0.429, p=0.018, $8^{th}$ week: r=0.032, p=0.865, $12^{th}$ week: r=-0.398, p=0.029). Insertion torque and removal torque has positive correlation but it was not statistically significant ($1^{st}$ week: r=0.410, p=0.129, $4^{th}$ week: r=0.156, p=0.578, $8^{th}$ week: r=0.236, p=0.398, $12^{th}$ week: r=0.260, p=0.350). Conclusion. In this study, bone quality may affect the degree of osseointegration positively during healing time and correlation between ISQ and degree of osseointegration can be different according to the healing time and bone quality.

Observation of the change of the dental implant stability and bone density evaluation methods (골밀도 평가방법과 임플란트 안정성 변화의 관찰)

  • Ko, Sok-Min;Park, Sung-Jae;Kim, In-Soo;Song, Seung-Il;Lee, In-Kyung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.185-192
    • /
    • 2009
  • Purpose: The aim of this study was to examine the correlation of the subjective and the objective evaluation of edentulous ridge bone quality, and to evaluate the change of the dental implant stability in each bone density group for early healing period after implant installation. Methods: Sixty-seven implants(Osstem implant$^{(R)}$, Seoul, Korea) were included in this study. We evaluated the bone density by 2 methods. The one was the subjective method which was determined by practitioner s tactile sense, the other was the objective bone type was based on Hounsfield units. The implant stability in each bone type group was assessed by resonance frequency analyzer(Osstell mentor$^{(R)}$). Data were analyzed for the change of the implant stability, and they were compared to verify the difference of groups at the time of installation, 2, 6, 10, 14 weeks postoperatively. Spearman's correlation was used to demonstrate the correlation between the subjective and the objective evaluation of the bone density, and analysis of variance(ANOVA) was used to analyze the differences of implant stability at each time point. Results: There was no close relation between the subjective and the objective evaluation of the bone density(r=0.57). In the subjective groups, there was statistically significant difference between the type 1 and 3 at 10 weeks and between the type 2 and 3 at 14 weeks. In the objective groups, there was no statistically significant difference between the D 1, 2, 3, 4, and 5 group with regard to RFA from baseline to 14 weeks(P>0.1). Conclusions: The implant stability increased over time during the study, and it was improved with bone density proportionally after 2weeks postoperatively. It is recommended that the decision of bone density is base on Hounsfield unit for implant loading time.

The effect of implant shape and bone preparation on primary stability

  • Moon, Sang-Hyun;Um, Heung-Sik;Lee, Jae-Kwan;Chang, Beom-Seok;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.5
    • /
    • pp.239-243
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate the effects of implant shape and bone preparation on the primary stability of the implants using resonance frequency analysis. Methods: Sixty bovine rib blocks were used for soft and hard bone models. Each rib block received two types of dental implant fixtures; a straight-screw type and tapered-screw type. Final drilling was done at three different depths for each implant type; 1 mm under-preparation, standard preparation, and 1 mm over-preparation. Immediately after fixture insertion, the implant stability quotient (ISQ) was measured for each implant. Results: Regardless of the bone type, the ISQ values of the straight-screw type and tapered-screw type implants were not significantly different (P>0.05). Depth of bone preparation had no significant effect on the ISQ value of straight-screw type implants (P>0.05). For the tapered-screw type implants, under-preparation significantly increased the ISQ value (P<0.05), whereas overpreparation significantly decreased the ISQ value (P<0.05). Conclusions: Within the limitations of this study, it is concluded that bone density seemed to have a prevailing effect over implant shape on primary stability. The primary stability of the tapered-screw type implants might be enhanced by delicate surgical techniques.

Vibration control of small horizontal axis wind turbine blade with shape memory alloy

  • Mouleeswaran, Senthil Kumar;Mani, Yuvaraja;Keerthivasan, P.;Veeraragu, Jagadeesh
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

Design of a Dual-Frequency Microstrip Patch Antenna (이중 공진형 마이크로스트립 패치 안테나 설계)

  • 김규성;김태우;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1131-1137
    • /
    • 1999
  • In this paper, a novel design method of an apertured coupled microstrip patch antenna with the single feeding structure is proposed for dual resonance frequencies with mutually perpendicular polarizations. The characteristics of this antenna are experimentally investigated. In order to achieve this goal, a new type of square patch with double notches is used as a radiator and the crossed slot and the bended mictrostrip feeder are adopted for the dual polarizations in the aperture-coupled structure. For the application of the proposed antenna, a Ku-band Tx/Rx $2\times$ subarray antenna is designed and manufactured. Also, the applicability of the antenna as a ground terminal is examined through performance analysis. According to the measurement, the gain of the antenna is 10dBi at the center frequencies of Tx and Rx, the side lobe level is lower than -13dB, and the cross polarization lebel is below 17 dB.

  • PDF

Microwave Dielectric Characteristics of CaTiO$_3$-La(Mg$_{2}$3/Ta$_{1}$3/)O$_3$ System (CaTiO$_3$-La(Mg$_{2}$3/Ta$_{1}$3/)O$_3$ 계의 고주파 유전특성)

  • 박찬식;이경호;김경용
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.75-81
    • /
    • 1999
  • $CaTiO_3$-$ La(Mg_{2/3}Ta_{1/3})O_3$ solid solutions were prepared in order to improve the microwave dielectric properties of $CaTiO_3$. XRD analysis revealed that the crystal structure of the solid solution changed from orthorhombic to monoclinic as the amount of $ La(Mg_{2/3}Ta_{1/3})O_3$increased. When x=0.3 in (1-x)$CaTiO_3+xLa(Mg_{2/3}Ta_{1/3})O_3$, the dielectric constant was 49, the temperature coefficient of resonance frequency was +$14ppm/^{\circ}C$, and $Q \times f_0$ was 17000.

  • PDF