• Title/Summary/Keyword: Resonance Effect

Search Result 1,412, Processing Time 0.033 seconds

Resonance Elastic Scattering and Interference Effects Treatments in Subgroup Method

  • Li, Yunzhao;He, Qingming;Cao, Liangzhi;Wu, Hongchun;Zu, Tiejun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.339-350
    • /
    • 2016
  • Based on the resonance integral (RI) tables produced by the NJOY program, the conventional subgroup method usually ignores both the resonance elastic scattering and the resonance interference effects. In this paper, on one hand, to correct the resonance elastic scattering effect, RI tables are regenerated by using the Monte Carlo code, OpenMC, which employs the Doppler broadening rejection correction method for the resonance elastic scattering. On the other hand, a fast resonance interference factor method is proposed to efficiently handle the resonance interference effect. Encouraging conclusions have been indicated by the numerical results. (1) For a hot full power pressurized water reactor fuel pin-cell, an error of about +200 percent mille could be introduced by neglecting the resonance elastic scattering effect. By contrast, the approach employed in this paper can eliminate the error. (2) The fast resonance interference factor method possesses higher precision and higher efficiency than the conventional Bondarenko iteration method. Correspondingly, if the fast resonance interference factor method proposed in this paper is employed, the $k_{inf}$ can be improved by ~100 percent mille with a speedup of about 4.56.

An analytical model for displacement response spectrum considering the soil-resonance effect

  • Zhang, Haizhong;Zhao, Yan-Gang
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.373-386
    • /
    • 2022
  • The development of performance-based design methodologies requires a reasonable definition of a displacement-response spectrum. Although ground motions are known to be significantly affected by the resonant-like amplification behavior caused by multiple wave reflections within the surface soil, such a soil-resonance effect is seldom explicitly considered in current-displacement spectral models. In this study, an analytical approach is developed for the construction of displacement-response spectra by considering the soil-resonance effect. For this purpose, a simple and rational equation is proposed for the response spectral ratio at the site fundamental period (SRTg) to represent the soil-resonance effect based on wave multiple reflection theory. In addition, a bilinear model is adopted to construct the soil displacement-response spectra. The proposed model is verified by comparing its results with those obtained from actual observations and SHAKE analyses. The results show that the proposed model can lead to very good estimations of SRTg for harmonic incident seismic waves and lead to reasonable estimations of SRTg and soil displacement-response spectra for earthquakes with a relatively large magnitude, which are generally considered for seismic design, particularly in high-seismicity regions.

Acoustic resonance and refrigerating capability of a Hofler type thermoacoustic refrigerating system (Hofler 타입 열음향 냉장시스템의 공진특성과 냉장성능)

  • Hah, Zae-Gyoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.76-80
    • /
    • 1997
  • Acoustic resonance characteristics were analyzed and their effect on the refrigerating capability were experimentally verified on a fabricated Hofler-type thermoacoustic refrigerating system. Factors governing the overall resonance are the resonator composed of a cavity and two pipes, the loudspeaker driving the resonator, and rear side impedance characteristics of speaker housing. All these are coupled with electric constants of the speaker to exhibit electric resonance. Also the 'wall-effect' within the resonator causes attenuation to reduce the sharpness of the resonance. Analysis and experiments showed housing and the wall-effect of the resonator reduce the sharpness of resonance. Maintaining the accuracy of the resonance is, therefore, very important for efficient refrigeration.

  • PDF

Kinetic and Theoretical Consideration of 3,4- and 3,5-Dimethoxybenzoyl Chlorides Solvolyses

  • Park, Kyoung-Ho;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2989-2994
    • /
    • 2013
  • The solvolysis rate constants of 3,4- (1) and 3,5-dimethoxybenzoyl (2) chlorides were measured in various pure and binary solvents at $25.0^{\circ}C$, and studied by application of the extended Grunwald-Winstein (G-W) equation, kinetic solvent isotope effect in methanolysis and activation parameters. The solvolysis of 1 was interpreted as the unimolecular pathway due to a predominant resonance effect from para-methoxy substituent like 4-methoxybenzoyl chloride (3), while that of 2 was evaluated as the dual mechanism, with unimolecular or bimolecular reaction pathway according to the character of solvent systems (high electrophilic/nucleophilic) chosen, caused by the inductive effect by two meta-methoxy substituents, no resonance one. In the solvolyses of 1 and 2 with two $-OCH_3$ groups, the resonance effect of para-methoxy substituent is more important to decide the mechanism than the inductive effect with other corresponding evidences.

Efficiency evaluation and characteristics of receiver coil under different inserted resonance coils in wireless power charging system for MAGLEV

  • Chung, Yoon Do;Jeon, Haeryong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.23-27
    • /
    • 2018
  • As the wireless power transfer (WPT) technology based on strongly resonance coupled method realizes large power charging without any wires through the air, there are advantages compared with the wired counterparts, such as convenient, safety and fearless transmission of power. From this reason, the WPT systems have started to be applied to the wireless charging for various power applications such as train, underwater ship, electric vehicle. This study aims for the effect and characteristics of different inserted resonance coil between Tx and Rx coils for charging system of superconducting magnetic levitation (MAGLEV) train. The transfer efficiency and effect are evaluated with helix type, rectangular type copper resonance coil, and HTS resonance coil under bulb and HTS magnet load, respectively. The input power is adapted with radio frequency (RF) power of 370 kHz below 500 W.

RESONANCE EFFECT ON THE GEOSYNCHRONOUS ORBIT DUE TO THE NON-ZONAL GEOPOTENTIAL (지구 비대칭 중력장이 정지위성에 미치는 효과)

  • 박종욱;문인상;최규홍;최용석
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.23-35
    • /
    • 1990
  • Resonance effect on the orbital elements of geosynchronous artificial satellite due to the non-zonal geopotential has been calculated. For the perturbation of a artificial satellite, perturbation effects due to the non-zonal geopotential is less than due to the $J_2$ or Luni-Solar perturbation, but non-zonal harmonics resonance exist. So, we calculate the perturbation of geosynchronous artificial satellite orbit due to the non-zonal harmonics resonance. The effect on the orbit eccentricity of non-zonal harmonics resonance is represented by a phase plane plot of ec. The effect on the orbit eccentricity of non-zonal harmonics resonance is represented by a phase plane plot of $e_c$ verse $e_s$. The evolution of mean longitude and semi-major axis are obtained.

  • PDF

Study on Moonpool Resonance Effect on Motion of Modern Compact Drillship

  • Yang, Seung Ho;Yang, Young Jun;Lee, Sang Beom;Do, Jitae;Kwon, Sun Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.53-60
    • /
    • 2013
  • A drillship is a representative floating offshore installation. The boom in oil and gas field development has dramatically increased the demands for drillships. Drillships have a moonpool in the center area of the ship for the purpose of drilling. This moonpool has an effect on the seakeeping performance of a drillship in the vicinity of the resonance frequency. Because of the moonpool, drillships act in different resonance modes, called the sloshing mode and piston mode. The objective of this study was to find the moonpool effect on the motion of a drillship through the motion analysis of a currently operating modern compact drillship. The predicted resonance frequencies based on Molin's theoretical formula, Fukuda's empirical formula, and BEM-based numerical analysis are compared. The accuracy of the predictions using the theoretical and empirical formulas is compared with the numerical analysis and evaluated. In the case of the piston mode, the difference between the resonance frequency from theoretical formula and the resonance frequency from the numerical analysis is analyzed. The resonance frequency formula for more a complex moonpool geometry such as a moonpool with a cofferdam is necessarily emphasized.

The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection

  • Jiaqin Xu;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.81-93
    • /
    • 2023
  • Due to the unclear mechanism of the influence of temperature on the resonance problem of doubly curved shells, this article aims to explore this issue. When the ambient temperature rises, the composite structure will expand. If the thermal effects are considered, the resonance response will become more complex. In the design of structure, thermal effect is inevitable. Therefore, it is of significance to study the resonant behavior of doubly curved shell structures in thermal environment. In view of this, this paper extends the previous work (She and Ding 2023) to the case of the nonlinear principal resonance behavior of graphene platelet reinforced metal foams (GPLRMFs) doubly curved shells in thermal environment. The effect of uniform temperature field is taken into consideration in the constitutive equation, and the nonlinear motion control equation considering temperature effect is derived. The modified Lindstedt Poincare (MLP) method is used to obtain the resonance response of doubly curved shells. Finally, we study the effects of temperature changes, shell types, material parameters, initial geometric imperfection and prestress on the forced vibration behaviors. It can be found that, as the temperature goes up, the resonance position can be advanced.

Effect of impingement edge geometry on the acoustic resonance excitation and Strouhal numbers in a ducted shallow cavity

  • Omer, Ahmed;Mohany, Atef;Hassan, Marwan
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.91-107
    • /
    • 2016
  • Flow-excited acoustic resonance in ducted cavities can produce high levels of acoustic pressure that may lead to severe damage. This occurs when the flow instability over the cavity mouth, which is created by the free shear layer separation at the upstream edge, is coupled with one of the acoustic modes in the accommodating enclosure. Acoustic resonance can cause high amplitude fluctuating acoustic loads in and near the cavity. Such acoustic loads could cause damage in sensitive applications such as aircraft weapon bays. Therefore, the suppression and mitigation of these resonances are very important. Much of the work done in the past focused on the fluid-dynamic oscillation mechanism or suppressing the resonance by altering the edge condition at the shear layer separation. However, the effect of the downstream edge has received much less attention. This paper considers the effect of the impingement edge geometry on the acoustic resonance excitation and Strouhal number values of the flow instabilities in a ducted shallow cavity with an aspect ratio of 1.0. Several edges, including chamfered edges with different angles and round edges with different radii, were investigated. In addition, some downstream edges that have never been studied before, such as saw-tooth edges, spanwise cylinders, higher and lower steps, and straight and delta spoilers, are investigated. The experiments are conducted in an open-loop wind tunnel that can generate flows with a Mach number up to 0.45. The study shows that when some edge geometries, such as lower steps, chamfered, round, and saw-tooth edges, are installed downstream, they demonstrate a promising reduction in the acoustic resonance. On the other hand, higher steps and straight spoilers resulted in intensifying the acoustic resonance. In addition, the effect of edge geometry on the Strouhal number is presented.

A Boundary Protection for Power Distribution Line Based on Equivalent Boundary Effect

  • Zhang, Xin;Mu, Long-Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.262-270
    • /
    • 2013
  • A boundary protection method for power distribution line based on equivalent boundary effect is presented in this paper. In the proposed scheme, the equivalent resonance component with a certain central frequency is sleeve-mounted at the beginning of protected zone. The 'Line Boundary' is built by using boundary effect, which is created by introducing impedance in the primary-side of line. The 'Line Boundary' is significantly different from line wave impedance. Therefore, the boundary protection principle can be applied to power distribution line without line traps. To analyze the frequency characteristic corresponding to traveling-waves of introducing impedance in the primary-side of line, distributed parameters model of equivalent resonance component is established. The results of PSCAD/EMTDC simulation prove the obvious difference of voltage high frequency component between internal faults and external faults due to equivalent resonance component, and validate the scheme.