• Title/Summary/Keyword: Resolution of imaging system

Search Result 586, Processing Time 0.033 seconds

Analysis and Control f Contact Mode AFM (접촉모드 AFM의 시스템 분석 및 제어)

  • 정회원;심종엽;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • Recently, scientists introduced a new type of microscope capable of investigating nonconducting surfaces in an atomic scale, which is called AFM (Atomic Force Microscope). It was an innovative attempt to overcome the limitation of STM (Scanning Tunnelling Microscope) which has been able to obtain the image of conducting surfaces. Surfaces of samples are imaged with atomic resolution. The AFM is an imaging tool or a profiler with unprecedented 3-D resolution for various surface types. The AFM technology, however, leaves a lot of room for improvement due to its delicate and fragile probing mechanism. One of the room for improvements is gap control between probe tip and sample surface. Distance between probe tip and sample surface must be kept in below one Angtrom in order to measure the sample surface in Angstrom resolution. In this paper, AFM system modeling, experimental system identification and control scheme based on system identification are performed and finally sample surface is measured by home-built AFM with such a control scheme.

  • PDF

System Resolution Recovery by Motion Blur Recovery Technique - Particuar Application to X-ray Computerized Tomography (이동 Blur 회복법을 이용한 분해능 향상-X-ray C.T.에의 응용)

  • 이수영;김홍석
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.3
    • /
    • pp.26-35
    • /
    • 1980
  • The degradation of image due to the finite size of sensing devices has been one of the problems in all digital imaging systems. The basic study on the improvement of the spatial resolution was carried out in both spatial and frequency domains by the resolution recovery techniques which have been used in optics. Here, the techniques were applied to CT (Computerized Tomography) system, and image with finer resolution was obtained by these techniques. The basic theory is described and the results of the simulation are shown.

  • PDF

Micro-CT System for Small Animal Imaging (소동물영상을 위한 마이크로 컴퓨터단층촬영장치)

  • Nam, Ki-Yong;Kim, Kyong-Woo;Kim, Jae-Hee;Son, Hyun-Hwa;Ryu, Jeong-Hyun;Kang, Seoung-Hoon;Chon, Kwon-Su;Park, Seong-Hoon;Yoon, Kwon-Ha
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.102-112
    • /
    • 2008
  • We developed a high-resolution micro-CT system based on rotational gantry and flat-panel detector for live mouse imaging. This system is composed primarily of an x-ray source with micro-focal spot size, a CMOS (complementary metal oxide semiconductor) flat panel detector coupled with Csl (TI) (thallium-doped cesium iodide) scintillator, a linearly moving couch, a rotational gantry coupled with positioning encoder, and a parallel processing system for image data. This system was designed to be of the gantry-rotation type which has several advantages in obtaining CT images of live mice, namely, the relative ease of minimizing the motion artifact of the mice and the capability of administering respiratory anesthesia during scanning. We evaluated the spatial resolution, image contrast, and uniformity of the CT system using CT phantoms. As the results, the spatial resolution of the system was approximately the 11.3 cycles/mm at 10% of the MTF curve, and the radiation dose to the mice was 81.5 mGy. The minimal resolving contrast was found to be less than 46 CT numbers on low-contrast phantom imaging test. We found that the image non-uniformity was approximately 70 CT numbers at a voxel size of ${\sim}55{\times}55{\times}X100\;{\mu}^3$. We present the image test results of the skull and lung, and body of the live mice.

  • PDF

Applications of Optical Imaging System in Dentistry

  • Eom, Joo Beom;Park, Anjin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Optical-based imaging technology has high resolution and can assess images in real time. Numerous studies have been conducted for its application in the dental field. The current research introduces an oral camera that includes fluorescent imaging, a second study examining a 3D intraoral scanner applying a confocal method and a polarization structure that identifies the 3D image of a tooth, and finally, an optical coherence tomography technique. Using this technique, we introduce a new concept 3D oral scanner that simultaneously implements 3D structural imaging as well as images that diagnose the inside of teeth. With the development of light source technology and detector technology, various optical-based imaging technologies are expected to be applied in dentistry.

A Handheld Probe Based Optical Coherence Tomography System for Diagnosis of Dental Calculus (치석 진단용 소형 프로브 기반 광간섭단층촬영 시스템)

  • Lee, Chang-Ho;Woo, Chai-Kyoung;Jung, Woong-Gyu;Kang, Hyun-Wook;Oh, Jung-Hwan;Kim, Jee-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.217-222
    • /
    • 2012
  • Optical coherence tomography(OCT) is a noninvasive optical imaging tool for biomedical applications. OCT can provide depth resolved two/three dimensional morphological images on biological samples. In this paper, we integrated an OCT system that was composed of an SLED(Superluminescent Light Emitting Diode, ${\lambda}_0$=1305 nm bandwith= 141 nm), a reference arm adopting a rapid scanning optical delay line(RSOD) to get high speed imaging, and a sample arm that used a micro electro mechanical systems(MEMS) scanning mirror. The sample arm contained a compact probe for imaging dental structures. The performance of the system was evaluated by imaging in-vivo human teeth with dental calculus, and the results indicated distinct appearance of dental calculus from enamel, gum or decayed teeth. The developed probe and system could successfully confirm the presence of dental calculus with a very high spatial resolution($6{\mu}m$).

Computer Simulation for Effects of Scintillator and Parallel Hole Collimator on Gamma Probe Imaging (섬광체와 평행구멍조준기가 감마프로브 영상에 미치는 영향에 관한 컴퓨터 시뮬레이션)

  • Bong, Jeong-Gyun;Kim, Hui-Jung;Lee, Jong-Du;Gwon, Su-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.563-570
    • /
    • 1998
  • The purpose of this study was to investigate the effects of scintillator and collimator parameters that tradeoff between system sensitivity and spatial resolution. The parameters simulated using Monte Carlo program were scintillator thickness, colimator hole shape, septal thickness, and hole length. The results show that the sensitivity increases exponentially upto about 1 cm of scintillator thickness as the thickness increases. However the sensitivity is almost constant when the scintiallator is thicker than about 1 cm. The simulation of collimator hole shape shows that the hexagonal hole gives the best spatial resolution for the same system sensitivity. The system statical resolution is improved, as both collimator septal thickness and hole length increase, however that system sensitivity is rapidly decreased. In conclusion, The optimization of scintillator and collimator parameters using monte carlo simulation may be useful to develop a high-resolution miniature gamma probe.

  • PDF

Research on Thermal Refocusing System of High-resolution Space Camera

  • Li, Weiyan;Lv, Qunbo;Wang, Jianwei;Zhao, Na;Tan, Zheng;Pei, Linlin
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.69-78
    • /
    • 2022
  • A high-resolution camera is a precise optical system. Its vibrations during transportation and launch, together with changes in temperature and gravity field in orbit, lead to different degrees of defocus of the camera. Thermal refocusing is one of the solutions to the problems related to in-orbit defocusing, but there are few relevant thermal refocusing mathematical models for systematic analysis and research. Therefore, to further research thermal refocusing systems by using the development of a high-resolution micro-nano satellite (CX6-02) super-resolution camera as an example, we established a thermal refocusing mathematical model based on the thermal elasticity theory on the basis of the secondary mirror position. The detailed design of the thermal refocusing system was carried out under the guidance of the mathematical model. Through optical-mechanical-thermal integration analysis and Zernike polynomial calculation, we found that the data error obtained was about 1%, and deformation in the secondary mirror surface conformed to the optical index, indicating the accuracy and reliability of the thermal refocusing mathematical model. In the final ground test, the thermal vacuum experimental verification data and in-orbit imaging results showed that the thermal refocusing system is consistent with the experimental data, and the performance is stable, which provides theoretical and technical support for the future development of a thermal refocusing space camera.

Enhancement of Spatial Resolution to Local Area for High Resolution Satellite Imagery (고해상도 위성영상을 위한 국소영역 공간해상도 향상 기법)

  • Kang, Ji-Yun;Kim, Ihn-Cheol;Kim, Jea-Hee;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.137-143
    • /
    • 2013
  • The high resolution satellite images are used in many fields such as weather observation, remote sensing, military facilities monitoring, cultural properties protection etc. Although satellite images are obtained in same satellite imaging system, the satellite images are degraded depending on the condition of hardware(optical device, satellite operation altitude, image sensor, etc.). Due to the fact that changing the hardware of satellite imaging system is impossible for resolution enhancement of these degraded satellite after launching a satellite, therefore the method of resolution enhancement with satellite images is necessary. In this paper the resolution is enhances by using a Super Resolution(SR) algorithm. The SR algorithm is an algorithm to enhance the resolution of an image by uniting many low resolution images, so an output image has higher resolution than using other interpolation methods. But It is difficult to obtain many images of the same area. Therefore, to solve this problem, we applied SR after by applying the affine and projection transform. As a results, we found that the images applied SR after affine and projection transform have higher resolution than the images only applied SR.

In Situ Fluorescence Optical Detection Using a Digital Micromirror Device (DMD) for 3D Cell-based Assays

  • Choi, Jong-Ryul;Kim, Kyujung;Kim, Donghyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • We have developed a fluorescence optical detection system using a digital micromirror device (DMD) for monitoring 3D cell culture matrices in situ. Full 3D imaging with fast scanning speed was implemented by the combined action of a DMD and a motorized stage. Imaging results with fluorescent microbeads measure the minimum axial resolution of the system as $6.3{\mu}m$, while full 1-mm scanning through 3D alginate-based matrix was demonstrated. For cell imaging, improved images were obtained by removing background fluorescence although the scanning distance was reduced because of low intracellular fluorescence efficiency. The system is expected to be useful to study various dynamics and behaviors of 3-dimensionally cultured cells in microfluidic systems.

Recent Advances in Nuclear Medicine Imaging Instrumentation (핵의학 영상기기의 최근 진보)

  • Jung, Jin-Ho;Choi, Yong;Hong, Key-Jo;Min, Byung-Jun;Hu, Wei;Kang, Ji-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.98-111
    • /
    • 2008
  • This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.