• Title/Summary/Keyword: Resolution Advisory (RA)

Search Result 4, Processing Time 0.018 seconds

A Development of 3-D Resolution Algorithm for Aircraft Collision Avoidance

  • Kim, Youngrae;Lee, Sangchul;Lee, Keumjin;Kang, Ja-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.272-281
    • /
    • 2013
  • Traffic Collision Avoidance System (TCAS) is designed to enhance safety in aircraft operations, by reducing the incidences of mid-air collision between aircraft. The current version of TCAS provides only vertical resolution advisory to the pilots, if an aircraft's collision with another is predicted to be imminent, while efforts to include horizontal resolution advisory have been made, as well. This paper introduces a collision resolution algorithm, which includes both vertical and horizontal avoidance maneuvers of aircraft. Also, the paper compares between the performance of the proposed algorithm and that of algorithms with only vertical or horizontal avoidance maneuver of aircraft.

Classifying Midair Collision Risk in Airspace Using ADS-B and Mode-S Open-source Data (ADS-B와 Mode-S 오픈소스 데이터를 활용한 공중충돌 위험 양상 분류)

  • Jongboo Kim;Dooyoul Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.552-560
    • /
    • 2023
  • Aircraft midair collisions are dangerous events that can cause massive casualties. To prevent this, civil aviation has mandated the installation of TCAS (ACAS), which is becoming more sophisticated with the help of new technologies. However, there are institutional problems in collecting data for TCAS research in Korea, limiting the ability to obtain data for personal research. ADS-B and Mode-S automatic broadcast various information about the flight status of the aircraft. This data also contains information about TCAS RA, which can be used by anyone to find examples of TCAS RA operation. We used the databases of ADS-B Exchange and Opensky-Network to acquire data and visually represent three TCAS RA cases through Python coding. We also identified domestic TCAS cases in the first half of 2023 and analyzed their characteristics to confirm the usefulness of the data.

Detection Performance Comparison of ADS-B and TCAS Using Simulation (시뮬레이션을 활용한 ADS-B와 TCAS의 탐지 성능 비교)

  • So, Jun-Soo;KU, SungKwan;Hong, Gyo-young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.465-472
    • /
    • 2015
  • In order to improve the performance of TCAS it should improve the performance of the sensor, which transmits a variety of information. In this paper, To improve the performance of the existing radar sensors such as being used in behalf of the next generation air traffic control system, ads-b the applied. In addition, ADS-B in a high precision by using information from the correction GPS system, SBAS assume would be able to apply an improved location accuracy for TCAS and analyzed TCAS and ADS-B. Played the simulation results, TCAS equipment receives the help of these ADS-B can calculate a CPA to determine the position of the aircraft in advance, and it was confirmed that it is possible to reduce the unnecessary RA operation, also, the pilot reduction and the workload, it has advantages such as fuel consumption and time associated with the reduced operation unnecessary RA was confirmed.

Validation of Mid Air Collision Detection Model using Aviation Safety Data (항공안전 데이터를 이용한 항공기 공중충돌위험식별 모형 검증 및 고도화)

  • Paek, Hyunjin;Park, Bae-seon;Kim, Hyewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.37-44
    • /
    • 2021
  • In case of South Korea, the airspace which airlines can operate is extremely limited due to the military operational area located within the Incheon flight information region. As a result, safety problems such as mid-air collision between aircraft or Traffic alert and Collision Avoidance System Resolution Advisory (TCAS RA) may occur with higher probability than in wider airspace. In order to prevent such safety problems, an mid-air collision risk detection model based on Detect-And-Avoid (DAA) well clear metrics is investigated. The model calculates the risk of mid-air collision between aircraft using aircraft trajectory data. In this paper, the practical use of DAA well clear metrics based model has been validated. Aviation safety data such as aviation safety mandatory report and Automatic Dependent Surveillance Broadcast is used to measure the performance of the model. The attributes of individual aircraft track data is analyzed to correct the threshold of each parameter of the model.