• Title/Summary/Keyword: Resistive SFCL

Search Result 120, Processing Time 0.027 seconds

Development of new current path pattern of YBCO thin films for Superconducting fault current limiters (초전도 한류기용 YBCO 박막 전류 Path Pattern 개발)

  • Lee B. W.;Kang J. S.;Park K. B.;Oh I. S.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.113-117
    • /
    • 2005
  • In this study, electromagnetic analysis of current paths including meander pattern, spiral pattern, and bi-spiral pattern were performed and in order to verity the analysis results, experiments tests including quench test, and insulation tests were performed. In addition, bubble corner concepts were introduced to enhance insulation reliability. From our study, bi-spiral pattern of YBCO thin films were rather effective for quench and insulation than the other patterns. So this current path pattern was adopted for YBCO thin films in order to develop 6.6 kV resistive fault current limiters. Finally YBCO thin films were connected in series and parallel to enhance capacity, and the test results of current limiting characteristics of 6.6kV resistive SFCL were successful. The Progress in Superconductivity is published every six month and serves as a channel for publications on superconductivity and related topics. The author(s) are required to submit THREE copies of the manuscripts along with original figures directly to the Editor.

  • PDF

Current limiting characteristics of the resistive SFCL using YBCO film (YBCO film을 이용한 저항형 초전도 한류기의 전류제한 특성)

  • Choi, Hyo-Sang;Kim, Hye-Rim;Hwang, Si-Dole;Hyun, Ok-Bae;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.277-280
    • /
    • 1999
  • We fabricated a resistive superconducting fault current limiter of two stripe meander type based on a YBCO film, and performed current limitation experiments. In order to disperse the heat generated at hot spots in the YBCO film the film was coated with a gold shunt layer. At $0^{\circ}$ fault angle the minimum quench current was $9.6 A_{peak}$(meander line cross section: $5{\times}10^{-6}cm^2$) and the fast quench time was 0.63 msec. The resistance of the limiter continued to increase for three cycles due to heat generation in the gold layer and was stabilized afterwards. At $45^{\circ}$ and $90^{\circ}$ the fast quench time were 0.56 msec and 0.26 msec, respectively. The quench time is believed to be reduced because faults occurred when the current was increasing or was at the peak value. With the limiter we could effectively limit the fault current about 1/5 times right after the fault and about 1/8.5 times three cycles after.

  • PDF

Enhancement of Power Rating for the Resistive Fault Current Limiter (병렬우선 직렬연결된 YBCO박막형 초전도 한류기의 용량증대)

  • Park K.B.;LEE B.W.;Kang J.S.;Oh I.S.;hyun O.B.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.806-808
    • /
    • 2004
  • The series and parallel connection is essential for increasing power ratings of resistive type for fault current limiters. To increase voltage class, components are connected in series and to increase current level to the nominal value, they are connected in parallel. There are two ways to connect components in series and parallel. First, connected in series and then the module connects to the parallel. Second, connected in parallel and the module connects to the series. We have studied for the two ways. In this paper, we particularly investigated way to connect components in parallel first This way has the advantage of inducing effective simultaneous quench without any other devices, for example, the thing which is inducing magnetic field to the limiting and shunt resistors. And also we studied for the endurance of component which is patterned to the bi-spiral for prospective fault current. It is very important to understand this, because SFCL will use as the only device to decrease burden of circuit breaker. As experimental results, limiting component patterned to bi-spiral endures fault current up to 30kA and it works well, in parallel to series connection,

  • PDF

Operating properties of resistive type superconducting fault current limiters with a single line-to-ground fault (1선지락사고에 대한 초전도한류기의 동작특성)

  • Park, Hyo-Sang;Park, Chang-Joo;Lee, Sang-il;Chung, Soo-Bok;Oh, Geum-Kon;Chung, Hun-Sang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.279-281
    • /
    • 2003
  • We analysed the operating properties of resistive type superconducting fault current limiters (SFCLs) based on YBCO thin films with a single line-to-ground fault. When a single line-to-ground fault occurred, the short circuit current of a fault phase increased up to about 6 times of transport currents immediately after the fault instant and was effectively limited to the designed current level within 2 ms by the resistance development of the SFCL. The fault currents of the sound phases almost did not change because of their direct grounding system. The unsymmetrical rates of a fault phase were distributed from 6.4 to 1.4. It was found that the unsymmetrical rates of currents were noticeably improved within one cycle after the fault instant. We calculated the zero phase currents for a single line-to-ground fault using the symmetrical component analysis. The positive sequence resistance was reduced remarkably right after the fault but eventually approached the balanced positive resistance component prior to the system fault. This means that the system reaches almost the three-phase symmetrical state in about 60 ㎳ after the fault. The ground currents were almost 3 times of the zero phase mts since most of the fault currents flowed through the grounding line.

  • PDF

Fault current limitation characteristics of the Bi-2212 bulk coil for distribution-class superconducting fault current limiters (배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성)

  • Sim, Jung-Wook;Kim, Hye-Rim;Yim, Seong-Woo;Hyun, Ok-Bae;Lee, Hai-Gun;Park, Kwon-Bae;Kim, Ho-Min;Lee, Bang-Wook;Oh, Il-Sung;Breuer, Frank;Bock, Joachim
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.639-640
    • /
    • 2006
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter(SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of 200 $V_{rms}$ and fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}$ within $0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLs.

  • PDF

Experimental and Analytical Studies on the Characteristics of Fast Switch in Combinations of Various Superconducting Tapes (다양한 선재 조합에 따른 이종 초전도 스위치의 특성 실험 및 분석)

  • Lee, Ji-Ho;Kim, Young-Jae;Na, Jin-Bae;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Kim, Jin-Sub;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • A Hybrid Fault Current Limiter(FCL) which has more advantages in fast response and thermal characteristics than a simple resistive FCL had been proposed by our group. The Hybrid FCL consists of a resistive FCL for the magnitude of the first peak of fault current, and a fast switch for detecting fault current and generating the repulsive force within a cycle in fault situation. In ideal case, the impedance of the fast switch wound with two other kinds of HTS tape is negligibly zero in normal operation. But, during the fault situation, each HTS tape has different quench characteristics because of asymmetric current distribution. And this phenomenon causes effective flux and this flux opens the switch through the repulsive force applied to a metal plate of the fast switch. The magnitude of the repulsive force affects the switching characteristics of the fast switch. It should be large enough to raise the metal plate up. Otherwise the arc re-out break which are caused by not enough repulsive force to raise the metal plate up can cause unintended operation of the fast switch. In this paper, the numerical calculation of the repulsive force applied to the metal plate of the fast switch in various combinations of HTS tapes was performed by using the short-circuit test and finite element method.

Characteristics of superconducting fault current limiters with various pattern shape (초전도 전류제한기의 패턴형상별 특성)

  • Choi, H.S.;Chung, H.S.;Choi, C.J.;Lee, S.I.;Chung, S.B.;Oh, G.K.;Lim, S.H.;Han, B.S.;Chung, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.529-532
    • /
    • 2003
  • Quench behavior of resistive superconducting fault current limiters (SFCLs) with various pattern shapes was investigated. The pattern shapes employed were meander, bi-spiral, and spiral shapes of identical line width, gap and margin. SFCLs were fabricated from YBCO thin films grown on two-inch diameter $Al_2O_3$ substrates under the same conditions. Resistance rise of current limiting elements was low at a spiral shape before the whole quench completion, which may act as a disadvantage for simultaneous quench in serial connection between current limiting elements, but the temperature tended to have similar values at higher voltages. On the other hand, bi-spiral shape was severe at insulation level between current limiting lines. When these aspects were considered, we concluded that a meander shape was appropriate to design for a resistive SFCL based on thin films except the concentration of electric field at edge areas of strip lines.

  • PDF

A study on characteristics for a resistive SFCL with gold layer (Gold층을 가진 저항형 초전도 한류기에 대한 특성연구)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.348-351
    • /
    • 1999
  • We investigated current limiting properties for an SFCL of YBCO thin film coated with an Au layer. The YBCO film of 1 mm wide and 400 nm thick could carry the current 9.6 A$_{peak}$ without quench. The SFCL limited the fault current below 7.6 A$_{peak}$, which otherwise increases above 65 A$_{peak}$ and melted down at the potential fault current of about 100 A$_{peak}$ which is 10 times greater than the quench current. This means that the Au layer successfully protected the superconducting film by dispersing the heat generated at hot spots and electrically shunting the YBCO film.

  • PDF

Operational Characteristics of Bride Type SFCL Using Switching Operation of Resistive Type HTSC Element (저항형 고온초전도 소자의 스위칭동작을 이용한 브리지타입 고온초전도 전류제한기의 동작 특성)

  • Lim, Sung-Hun;Park, Chung-Ryul;Lee, Jong-Hwa;Ko, Seok-Cheol;Park, Hyeong-Min;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.83-85
    • /
    • 2004
  • We proposed the bridge type fault current limiter(FCL) using switching operation of high-Tc superconducting(HTSC) thin film. The proposed bridge type FCL consists of HTSC thin film, a diode bridge and a dc reactor. The controller for the operation of an interrupter is required in the conventional bridge type FCL to prevent the continuous increase of fault current after a fault happens. On the other hand, the proposed bridge type FCL can limit the fault current without the interrupter and the controller for its operation by the resistance generated when the gradually increased fault current exceeds HTSC thin film's critical current. We calculated the time when the gradually increased fault current started to be limited by the resistance generated in HTSC thin film after a fault happened and confirmed that it could be dependent on the amplitude of source voltage. The experimental results well agreed with the calculated ones from simulation.

  • PDF

Development of an Solid Separation System for Pig Slurry (돈 슬러리용 고형물 분리시스템 개발)

  • 김민균;김태일;최동윤;백광수;박진기;양창범;탁태영
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • This study was conducted to develope the new solid separating system which can be efficiently and economically removed the solid parts in high pollutants concentration of pig slurry. The pollutants concentration, BOD$_{5}$ , COD and SS of the slurry used in this study was 15,990($\pm$2,389)mg/l, 20,004($\pm$5,512)mg/l and 26,486($\pm$5,935)mg/l, respectively. After removal of solid part in slurry, the pollutants concentration, BOD$_{5}$, COD and SS was change into 5,617($\pm$690)mg/l, 5,553($\pm$633)mg/land 1,456($\pm$341)mg/l, respectively in the Fixed biological membrane tank. The reduction of the pollutants concentration of suspend liquid through membrane will be allowed to greatly improve the water purification by an Activated sludge method. This separating system consisted of a temporary storage, a circulating tank and a Fixed Biological membrane tank. A temporary storage which has a draining system of screw type and an aeration device played a tremendous role in draining the solid by filled an aeration of 0.3 l/min. A Fixed Biological membrane tank of which a styrofoam filled in a 2/3 volume as a Biological media was fixed by a stainless steel net (pore size : 0.5mm) to separate the liquid layer of influx in them. The separating system efficiency factors were the speed of screw motor, cycle number of slurries in a circulating tank and moisture contents of solid effluent through the screw path. Although the pollutants concentration was very variable in temporary storage, the final concentration of $BOD_5$ and SS, except COD of the suspended liquid in a Fixed biological membrane were not different regardless of cycle number of a circulating tank. Moisture contents of effluent from temporary storage was 73% under the speed 1 ppm of screw motor and 62% under the 1/4rpm of it.

  • PDF