• Title/Summary/Keyword: Resistant pathogens

Search Result 378, Processing Time 0.032 seconds

Antibiotic Resistance of Staphylococcus Aureus (황색포도알균의 항생제 내성)

  • Kim, Yun-Kyung;Hong, Hae-Sook;Jeong, Jae-Sim
    • Journal of Korean Biological Nursing Science
    • /
    • v.8 no.1
    • /
    • pp.5-14
    • /
    • 2006
  • Staphyloccus aureus is one of the most important pathogens in clinical settings. It is also one of the leading causes of nosocomial infections and the dissemination of multiple drug-resistant strains, mainly methicillin resistant Staphyloccus aureus, and the recent emergence of a vancomycin resistant MRSA is the concern to hospital worldwide. MRSA strains have acquired multiple resistance to a wide range of antibiotics, including aminoglycosides and macrolides. $\beta$-Lactam resistance of methicillin-resistnat Staphyococcus aureus is determined by the function of penicillin binding protein 2'(PBP2') encoded by the methicillin resistance gene mec A. MRSA strains carry methicillin resistance gene mecA, encoded by a mobile genetic element designated staphylococoal cassette chromosome mec(SCCmec). MRSA clones are defined by the type of SCCmec element and the genotype of the methicilline-susceptible Staphyococcus aureus chromosome in which the SCCmec element is integrated.

  • PDF

The Comparison of Disinfection Technologies for Managing Antibiotic Resistance ; Chlrorination, Ozonation and Electron Beam (항생제 내성 제어를 위한 소독 기법간의 비교 ; 염소, 오존 및 전자빔)

  • Oh, Junsik;Kim, Sungpyo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.797-803
    • /
    • 2013
  • Recently, a number of countries are now considering the reuse of effluents from wastewater treatment for various water applications. To improve the reuse of wastewater effluent, the development of appropriate micro-pollutant removal technology is necessary. Although several researche have been studied for removing micro-pollutants in water, little study has been conducted for the removal of emerging contaminant such as antibiotic resistant genes (ARGs) by disinfection processes. Therefore, the aim of this study is to compare the capacity of disinfection technologies such as chlorination, ozone, and electron beam, for removing antibiotic resistant bacteria (ARB) and ARGs. Based on this study, better ARG removal can be achieved by ozonation and electron beam. Relatively, high CT values of chlorination or ozonation are needed to remove ARB and ARG compared to conventional pathogens.

Synergistic Antibacterial Activity of an Active Compound Derived from Sedum takesimense against Methicillin-Resistant Staphylococcus aureus and Its Clinical Isolates

  • Jeong, Eun-Tak;Park, Seul-Ki;Jo, Du-Min;Khan, Fazlurrahman;Choi, Tae Ho;Yoon, Tae-Mi;Kim, Young-Mog
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1288-1294
    • /
    • 2021
  • There are a growing number of reports of hospital-acquired infections caused by pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). Many plant products are now being used as a natural means of exploring antimicrobial agents against different types of human pathogenic bacteria. In this research, we sought to isolate and identify an active molecule from Sedum takesimense that has possible antibacterial activity against various clinical isolates of MRSA. NMR analysis revealed that the structure of the HPLC-purified compound was 1,2,4,6-tetra-O-galloyl-glucose. The minimum inhibitory concentration (MIC) of different extract fractions against numerous pathogenic bacteria was determined, and the actively purified compound has potent antibacterial activity against multidrug-resistant pathogenic bacteria, i.e., MRSA and its clinical isolates. In addition, the combination of the active compound and β-lactam antibiotics (e.g., oxacillin) demonstrated synergistic action against MRSA, with a fractional inhibitory concentration (FIC) index of 0.281. The current research revealed an alternative approach to combating pathogenesis caused by multi-drug resistant bacteria using plant materials. Furthermore, using a combination approach in which the active plant-derived compound is combined with antibiotics has proved to be a successful way of destroying pathogens synergistically.

A Preliminary Study: Antibiotic Resistance of Escherichia coli and Staphylococcus aureus from the Meat and Feces of Various South African Wildlife Species

  • van den Honert, Michaela Sannettha;Gouws, Pieter Andries;Hoffman, Louwrens Christiaan
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.135-144
    • /
    • 2021
  • This study determined the antibiotic resistance patterns of Escherichia coli and Staphylococcus aureus from the raw meat and feces of three game species from three different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. E. coli was tested against ampicillin, ceftazidime, chloramphenicol, streptomycin, sulphafurazole and tetracycline. S. aureus was tested against tetracycline, erthromycin, vancomycin, penicillin, oxacillin and cefoxitin. There were no significant differences in the E. coli antibiotic resistance profiles between the meat and fecal samples (except towards ceftazidime where 5% of the meat isolates were resistant and 0% of the fecal isolates). The S. aureus meat isolates showed high (75%) resistance towards penicillin and on average, 13% were resistant to oxacillin/ cefoxitin, indicating methicillin resistance. The results from this study indicate that there is incidence of antibiotic resistant bacteria from the feces and meat of wildlife species across South Africa, suggesting that cross contamination of the meat occurred during slaughter by antibiotic resistant bacteria from the abattoir personnel or equipment and or from carcass fecal matter. In addition, the results highlight the importance of food safety and hygiene procedures during slaughter to prevent cross-contamination of antibiotic resistant bacteria, as well as pathogens, onto raw meat.

Changes in Pathogens and Antibiotic Sensitivities in very Low Birth Weight Infants with Neonatal Sepsis (극소저출생체중아에서 신생아 패혈증의 원인균 및 항생제 감수성의 변화)

  • Kim, Kyung-Nam;Park, Ho-Jin
    • Neonatal Medicine
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • Purpose : To set up an appropriate treatment plan for neonatal sepsis by investigating changes in pathogens and antibiotic sensitivities. Methods : The medical records of very low birth weight infants (VLBWI) admitted to the neonatal intensive care unit (NICU) of the Eulji University Hospital between January 2000 and June 2006 were retrospectively reviewed. The culture reports were analyzed for causative microorganisms and antibiotic sensitivities. Results : Among 164 neonates, 19 neonates (11.6%) had 26 episodes of culture-proven sepsis. Very late onset sepsis was the most common type. The dominant pathogens of sepsis included Klebsiella pneumoniae, Streptococcus spp., coagulase negative Staphylococcus and Enterobacter spp., and were mostly multi-drug resistant. Conclusion : For the appropriate treatment of neonatal sepsis, proper use of antibiotics through the periodic review and understanding of changes of the microorganisms and antimicrobial sensitivities is necessary to prevent multi-drug resistant microorganisms and to avoid excessive use of broad-spectrum empiric antibiotics.

Egg Antibody Farming and IgY Technology for Food and Biomedical Applications

  • Sim, J.S.;Sunwoo, H.H.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • It has been recognized that the hen, like its mammalian counterparts, provides young chicks with antibodies as protection against hostile invaders. This system facilitates the transfer of specific antibodies from serum to egg yolk, and provides a supply of antibodies called immunoglobulin Y(IgY) to the developing embryo and the hatched chick. The protection against pathogens that the relatively immune-incompetent newly hatched chick has, is through transmission of antibodies from the mother via the egg. Egg yolk, therefore, can be loaded with a large amount of IgY against pathogens which can immobilize the existing or invading pathogens during the embryo development or in day-old chicks. Thus, the immunization of laying hens to various pathogens results in production of different antigen-specific IgY in eggs. Egg yolk contains 8∼20 mg of jmmunoglobulins (IgY) per ml or 136∼340 mg per yolk suggesting that more than 30 g of IgY can be obtained from one immunized hen in a year. By immunizing laying hens with antigens and collecting IgY from egg yolk, low cost antibodies at less than $10 per g compared to more than $20,000 per g of mammalian IgG can be obtained. This IgY technology opens new potential market applications in medicine, public health, veterinary medicine and food safety. A broader use of IgY technology could be applied as biological or diagnostic tool, nutraceutical or functional food development, oral-supplementation for prophylaxis, and as pathogen-specific antimicrobial agents for infectious disease control. This paper has emphasized that when IgY-loaded chicken eggs are produced and consumed, the specific antibody binds, immobilizes and consequently reduces or inhibits the growth or colony forming abilities of microbial pathogens. This concept could serve as an alternative agent to replace the use of antibiotics, since today, more and more antibiotics are less effective in the treatment of infections, due to the emergence of drug-resistant bacteria.

Bacterial Pathogens of Ventilator Associated Pneumonia in a Tertiary Referral Hospital

  • Chi, Su Young;Kim, Tae Ok;Park, Chan Woo;Yu, Jin Yeong;Lee, Boram;Lee, Ho Sung;Kim, Yu Il;Lim, Sung Chul;Kwon, Yong Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.1
    • /
    • pp.32-37
    • /
    • 2012
  • Background: This study evaluates the bacterial pathogens of Ventilator-associated pneumonia (VAP) in a tertiary referral hospital. Methods: A total of 109 bacterial pathogens from 91 adult patients with VAP, who were admitted to the medical intensive care unit from January 2008 to December 2009, were examined. Clinical characteristics, bacterial pathogens, and resistance profiles were analyzed. Results: Staphylococcus aureus (44%) was the most frequently isolated. Acinetobacter baumanii (30%), Pseudomonas aeruginosa (12%), Stenotrophomonas maltophilia (7%), Klebsiella pneumoniae (6%), and Serratia marcescens (2%) were isolated from the transtracheal aspirates or bronchoalveolar lavage in patients with VAP. There was no significant difference of bacterial pathogens between early and late onset VAP. All isolated S. aureus were methicillin resistant S. aureus; the imipenem resistance rate of A. baumanii was 69%. Conclusion: The two most frequent pathogens of VAP were S. aureus and A. baumanii. There were no pathogenic differences between early and late onset VAP.

Antimicrobial Activity of a Bacteriocin Produced by Enterococcus faecalis KT11 against Some Pathogens and Antibiotic-Resistant Bacteria

  • Abanoz, Hilal Seval;Kunduhoglu, Buket
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.1064-1079
    • /
    • 2018
  • In this study, the antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11, isolated from traditional Kargı Tulum cheese, was determined, and bacteriocin KT11 was partially characterized. The results showed that bacteriocin KT11 was antagonistically effective against various Gram-positive and Gram-negative test bacteria, including vancomycin- and/or methicillin-resistant bacteria. The activity of bacteriocin KT11 was completely abolished after treatment with proteolytic enzymes (proteinase K, ${\alpha}$-chymotrypsin, protease and trypsin), which demonstrates the proteinaceous nature of this bacteriocin. Additionally, bacteriocin KT11 remained stable at pH values ranging from 2 to 11 and after autoclaving at $121^{\circ}C$ for 30 min. In addition, the activity of bacteriocin KT11 was stable after treatment with several surfactants (EDTA, SDS, Triton X-100, Tween 80 and urea) and organic solvents (chloroform, propanol, methanol, ethyl alcohol, acetone, hexane and ethyl ether). Cell-free supernatant of E. faecalis KT11 was subjected to ammonium sulfate precipitation and then desalted by using a 3.5-kDa cut-off dialysis membrane. The bacteriocin activity was determined to be 711 AU/mL in the dialysate. After tricine-SDS-PAGE analysis, one peptide band, which had a molecular weight of ~3.5 kDa, exhibited antimicrobial activity. Because the bacteriocin KT11, isolated from E. faecalis KT11, exhibits a broad antimicrobial spectrum, heat stability and stability over a wide pH range, this bacteriocin can be used as a potential bio-preservative in foods. Additionally, bacteriocin KT11 alone or in combination with conventional antibiotics may provide a therapeutic option for the treatment of multidrug-resistant clinical pathogens after further in vivo studies.

Antibacterial properties of quinolones

  • Yoshida, Hiroaki
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.40-47
    • /
    • 1997
  • New quinolones generally have a broad antibacterial spectrum against gram-positive, gram-negative, glucose-nonfermenting and anaerobic bacteria. Some of newly developed quinolones have potent activities against S. aureus including MRSA, S.pneumoniae including PRSP, B. fragilis, chlamydiae, mycoplasmas and mycobacteria as well, and show good activities against various strains resistant to antibacterial agents of other classes. Quinolones display postantibiotic effects in vitro and are bactericidal at concentrations similar to or twice that of the minimum inhibitory concentrations (MICs) for susceptible pathogens. In experimental murine infection models including systemic infections with various pathogens such as S. aureus, S. pyogenes, S. pneumoniae, E. coli and P. aeruginosa, quinolones have shown good oral efficacy as well as parenteral efficacy. Good oral absorption and good tissue penetration of quinolones account for good therapeutic effects in clinical settings. The target of quinolones are two structurally related type II topoisomerases, DNA gyrase and DNA topoisomerase IV. Quinolones are shown to stabilize the ternary quinolone-gyrase-DNA complex and inhibit the religation of the cleaved double-stranded DNA. Bacteria can acquire resistance to quinolones by mutations of these target enzymes. Mutation sites and amino acid changes in DNA gyrase and DNA topoisomerase IV are similar in the organisms examined, suggesting that the mechanism of quinolone resistance in the target enzymes is essentially the same among various organisms. Quinolones act on both the target enzymes to different degrees depending on the organisms or agents tested, and bacteria become highly resistant to quinolones in a step-wise fashion. Incomplete cross-resistance among quinolones in some strains of E. coli and S. aureus suggests the possibility of finding quinolones active against quinolone-resistant strains which are prevailing now. To find such quinolones, the potency toward two target enzymes and the membrane permeability including influx and/or efflux systems should be taken into account.

  • PDF

EVALUATION OF MICROBIAL RISK IN SOIL AMENDED WITH ORGANIC FERTILIZERS FROM STABILIZED SWINE MANURE WASTE

  • Han, Il;Lee, Young-Shin;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.129-135
    • /
    • 2007
  • This study evaluated microbial risk that could develop within soil microbial communities after amended with organic fertilizers from stabilized swine manure waste. For this purpose, we assessed the occurrences and competitiveness of antibiotic resistance and pathogenicity in soil microbial communities that were amended with swine manure wastes stabilized by a traditional lagoon fermentation process and an autothermal thermophilic aerobic digestion process, respectively. According to laboratory cultivation detection analysis, soil applications of the stabilized organic fertilizers resulted in increases in absolute abundances of antibiotic resistant bacteria and of two tested pathogenic bacteria indicators. The increase in occurrences might be due to the overall growth of microbial communities by the supplement of nutrients from the fertilizers. Meanwhile, the soil applications were found to reduce competitiveness for various types of antibiotic resistant bacteria in the soil microbial communities, as indicated by the decrease in relative abundances (of total viable heterotrophic bacteria). However, competitiveness of pathogens in response to the fertilization was pathogens-specific, since the relative abundance of Staphylococcus was decreased by the soil applications, while the relative abundance of Salmonella was increased. Further testes revealed that no MAR (multiple antibiotic resistance) occurrence was detected among cultivated pathogen colonies. These findings suggest that microbial risk in the soil amended with the fertilizers may not be critical to public health. However, because of the increased occurrences of antibiotic resistance and pathogenicity resulted from the overall microbial growth by the nutrient supply from the fertilizers, potential microbial risk could not be completely ruled out in the organic-fertilized soil samples.