• Title/Summary/Keyword: Resistant pathogens

Search Result 378, Processing Time 0.029 seconds

Molecular Typing of Acinetobacter Baumannii Strains by Randomly Amplified Polymorphic DNA (RAPD) Analysis (Randomly Amplified Polymorphic DNA (RAPD) 분석에 의한 Acinetobacter Baumannii 균주의 유전형 분류)

  • Oh, Jae-Young;Cho, Jae-Wee;Park, Jong-Chun;Lee, Je-Chul
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.129-139
    • /
    • 2000
  • Acinetobacter baumannii strains are emerging pathogens of the nosocomial infection with an increasing frequency in recent years. The therapeutic difficulty due to the wide spread of multiple resistant strains was major problem in A. baumannii infection. It seems likely that high frequency of A. baumannii infection will be increasing epidemiological importance in the future. However, the current limited understanding of the epidemiology of A. baumannii infections is caused by lack of a rapid and practical method for the molecular characterization of A. baumannii strains. This study was undertaken to determine molecular types and genetic similarity among A. baumannii strains isolated from four hospitals by RAPD analysis. Eighty-five strains, including 40 from Chunnam University Hospital, 27 from Dankook University Hospital, 15 from Yonsei University Hospital, and 3 from Seonam University Hospital, were classified into three molecular types. Molecular type II was the most common pattern and included 72 strains. All strains from Dankook University Hospital and 40 strains from Chunnam University Hospital belonged to molecular type I or II. A. baumannii strains form Yonsei University Hospital were very distant similarity values. The range of genetic similarity values among 85 strains of A. baumannii was 0.26 to 1.00. Although phenotypes including biotype and antimicrobial resistance pattern of A. baumannii strains were same or very similar to each other, their RAPD patterns were quite different. Typing with phenotypes was found to be less reliable than molecular typing by RAPD analysis. These results suggest that RAPD analysis provides rapid and simple typing method of A. baumannii strains for epidemiological studies. This work is the first epidemiological report of A. baumannii infections in Korea and it is hoped that results of this work may contribute to a better understanding of the clinical importance and epidemiology of A. baumannii strains.

  • PDF

Induction of Systemic Resistance in Watermelon to Gummy Stem Rot by Plant Growth-Promoting Rhizobacteria

  • Lee, Yong-Hoon;Lee, Wang-Hyu;Shim, Hyeong-Kwon;Lee, Du-Ku
    • The Plant Pathology Journal
    • /
    • v.16 no.6
    • /
    • pp.312-317
    • /
    • 2000
  • The selected five plant growth-promoting rhizobacteria (PGPR) strains, WR8-3 (Pseudomonas fluorescens), WR8-6 (P. putida), WR9-9 (P. fluorescens), WR9-11 (Pseudomonas sp.), and WR9-16 (P. putida) isolated in the rhizosphere of watermelon plants were tested on their growth promotion and control effect against gummy stem rot of watermelon. Strains, WR8-3 and WR9-16 significantly increased stem length of watermelon, and there was a little increase in leaf area, fresh weight and root length when strains, WR8-3, WR9-9 and WR9-16 were treated. Generally, seed treatment was better for plant growth promotion than the soil drench, but there was no significant difference. Seed treatment and soil drench of each bacterial strain also significantly reduced the mean lesion area (MLA) by gummy stem rot, but there was no significant difference between the two treatments. At initial inoculum densities of each strain ranging from 10$^6\;to\;10^{15}$ cfu/g seed, approximately the same level of disease resistance was induced. But resistance induction was not induced at the initial inoculum density of 10$^3$ cfu/g seed. Resistance was induced by treating the strains, WR9-9, WR9-11 and WR9-16, on all of four watermelon varieties tested, and there was no significant difference in the decrease of gummy stem rot among varieties. Populations of the strains treated initially at log 9-10 cfu/g seed, followed with a rapid decrease from planting day to 1 week after planting, but the population density was maintained above log 5.0 cfu/g soil until 4 weeks after planting. Generally no or very weak in vitro antagonism was observed at the strains treated excepting WR9-11. Rifampicin-resistant bacteria which had been inoculated were not detected in the stems or leaves, which suggesting that the bacterium and the pathogens remained spatially separated during the experiment. This is the first report of rsistance induction in watermelon to gummy stem rot by PGPR strains.

  • PDF

Isolation, characterization, and evaluation of Bacillus thuringiensis isolated from cow milk

  • Kweon, Chang-Hee;Choi, Sang-Yoon;Kwon, Hyog-Young;Kim, Eun-Hye;Kang, Hyun-Mi;Moon, Jin-San;Jang, Geum-Chag;Lee, Hee-Soo;Kang, Seung-Won;Kim, Jong-Man;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.3
    • /
    • pp.169-176
    • /
    • 2012
  • Probiotics colonize the intestines and exert an antibacterial effect on pathogens. Therefore, probiotics could be used as a preventive agent against lethal infections. To isolate probiotic microorganisms, 116 bacterial strains were isolated from healthy cow's milk and were subjected to Gram-stain, morphology and biochemical analyses, Vitek analysis, and 16S rRNA analysis. One of the strains identified as Bacillus (B.) thuringiensis 87 was found to grow very well at pH 4.0~7.0 and to be resistant to high concentrations of bile salts (0.3~0.9% w/v). B. thuringiensis was susceptible to the antibiotics used in the treatment of bovine mastitis, yet it exhibited an antimicrobial effect against Staphylococcus (S.) aureus 305. Moreover, it protected mice from experimental lethal infections of E. coli O55, Salmonella typhimurium 01D, and S. aureus 305 through a significant induction of interferon-${\gamma}$, even at four-week post-administration of B. thuringiensis. Although oral administration of B. thuringiensis 87 did not provide significant protection against these lethal challenges, these results suggest that B. thuringiensis 87 could be a feasible candidate as a probiotic strain.

Greenhouse Evaluation of Melon Rootstock Resistance to Monosporascus Root Rot and Vine Decline as Well as of Yield and Fruit Quality in Grafted 'Inodorus' Melons

  • Jang, Yoonah;Huh, Yun-Chan;Park, Dong-Kum;Mun, Boheum;Lee, Sanggyu;Um, Yeongcheol
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.614-622
    • /
    • 2014
  • Melons (Cucumis melo L.) are generally grafted onto Cucurbita rootstocks to manage soilborne pathogens such as Monosporascus root rot and v ine decline (MRR/VD) and Fusarium wilt. However, g rafting onto Cucurbita rootstocks reportedly results in the reduction of fruit quality. In this study, the resistance to MRR/VD, yield, and fruit quality of melons grafted onto melon rootstocks were evaluated under greenhouse conditions. Eight melon rootstocks (R1 to R8) were used and the inodorus melon 'Homerunstar' was used as scion. Melon rootstocks R1 to R6 were selected based on resistance to MRR/VD under greenhouse conditions. Non-grafted 'Homerunstar' and plants grafted onto squash interspecific hybrid 'Shintozwa' rootstock (Cucurbita maxima D. ${\times}$ C. moschata D.) served as controls. Grafted melons were cultivated in the greenhouse infested with Monosporascus cannonballus during two growing seasons (summer and autumn). The responses to MRR/VD, yield, and fruit quality differed depending on the rootstocks and growing season. The melons grafted onto 'Shintozwa' exhibited less severe disease symptoms and higher survival rates than non-grafted melons in both seasons. While the melon rootstocks in the summer cultivation did not increase the survival rate compared to non-grafted melons, the melon rootstocks R1 and R2 in the autumn cultivation led to higher survival rates. The melon rootstocks resistant to MRR/VD increased the percentage of marketable fruits and marketable yields. Grafting onto the melon rootstocks caused little or no reduction of fruit quality such as low calcium content, fruit softening, and vitrescence, especially in lower-temperature autumn season. Accordingly, these results suggest that grafting onto the melon rootstocks may increase the tolerance to MRR/VD and the marketable yield without a reduction of fruit quality.

Influence of Essential Oil in 'Shiranuhi' Immature Fruit on Antioxidant and Antimicrobial Activities (부지화 미숙과 에센셜 오일의 항산화 및 항균 활성 효과)

  • Kim, Sang Suk;Hyun, Ju Mi;Kim, Kwang Sik;Park, Kyung Jin;Park, Suk Man;Choi, Young Hun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.6
    • /
    • pp.493-497
    • /
    • 2013
  • This study was designed to analyze the chemical composition of essential oil in 'Shiranuhi' immature fruit and to test their biological activities. 'Shiranuhi' immature essential oils (SIEO) were obtained by steam distillation from fruits collected from Jeju Island and were analyzed using gas chromatograph (GC)-flame ionization detectors (FID) and GC-MS. Fourteen components were identified in the essential oil. Limonene (75.21%) and terpineol (8.68%) were the major components in SIEO. Since acne vulgaris is the combined result of a bacterial infection and the inflammatory response to that infection, we examined whether SIEO possessed antibacterial against skin pathogens. As a result, SIEO showed excellent antibacterial activities against drug-susceptible and -resistant Propionibacterium acnes and Staphylococcus epidermidis, which are acne-causing bacteria. In this study, SIEO was examined on DPPH radical scavenging activities, which showed moderate antioxidant activity ($SC_{50}$, $15.36{\mu}L/mL$). In order to determined whether SIEO can be safely applied to human skin, the cytotoxicity effects of SIEO were determined by colorimetric MTT assays in normal human fibroblasts and keratinocyte HaCaT cells. They exhibited low cytotoxicity at $0.5{\mu}L/mL$ in both celllines. Based on these results, we suggest the possibility that essential oil of 'Shiranuhi' maybe considered as an antibacterial and antioxidant agent.

Antiviral Activity of a Type 1 Ribosome-inactivating Protein from Chenopodium album L.

  • Lee, Si-Myung;Cho, Kang-Jin;Kim, Yeong-Tae;Park, Hee-young;Kim, Su-il;Hwang, Young-Soo;Kim, Donghern
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.161-165
    • /
    • 1999
  • The antiviral activity of CAP30 from Chenopodium album, a type1 ribosome-inactivating protein (RIP), was examined against 5 different plant viral pathogens, and its activity against Tobacco mosaic virus was compared to those of well known antiviral proteins such as Pokeweed Antiviral protein from leaves and seeds. When the inoculating concentration of Tobacco mosaic virus was varied from 0.4 to $400{\mu}g/ml$, it was observed that CAP30 at the concentration of $1{\mu}g/ml$ suppressed the viral infection of C. amaranthicolor and C. quinoa almost completely up to $40{\mu}g/ml$ Tobacco mosaic virus. Results from the assays for the inhibitions of in vitro translation of rabbit reticulocyte lysate and the suppression of Tobacco mosaic virus infection ($10{\mu}g/ml$) to C. quinoa indicated that CAP30 is a strong inhibitor of protein synthesis and virus infection. The infection of several viruses other than Tobacco mosaic virus to host plants were also inhibited by $5{\mu}g/ml$ CAP30, suggesting that a gene encoding CAP30 can be used to develop transgenic virus-resistant plants.

  • PDF

Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

  • Yu, Ji-Gang;Lim, Jeong-A;Song, Yu-Rim;Heu, Sunggi;Kim, Gyoung Hee;Koh, Young Jin;Oh, Chang-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.385-393
    • /
    • 2016
  • Pseudomonas syringae pv. actinidiae causes bacterial canker disease in kiwifruit. Owing to the prohibition of agricultural antibiotic use in major kiwifruit-cultivating countries, alternative methods need to be developed to manage this disease. Bacteriophages are viruses that specifically infect target bacteria and have recently been reconsidered as potential biological control agents for bacterial pathogens owing to their specificity in terms of host range. In this study, we isolated bacteriophages against P. syringae pv. actinidiae from soils collected from kiwifruit orchards in Korea and selected seven bacteriophages for further characterization based on restriction enzyme digestion patterns of genomic DNA. Among the studied bacteriophages, two belong to the Myoviridae family and three belong to the Podoviridae family, based on morphology observed by transmission electron microscopy. The host range of the selected bacteriophages was confirmed using 18 strains of P. syringae pv. actinidiae, including the Psa2 and Psa3 groups, and some were also effective against other P. syringae pathovars. Lytic activity of the selected bacteriophages was sustained in vitro until 80 h, and their activity remained stable up to 50℃, at pH 11, and under UV-B light. These results indicate that the isolated bacteriophages are specific to P. syringae species and are resistant to various environmental factors, implying their potential use in control of bacterial canker disease in kiwifruits.

Probiotic Properties of Pediococcus pentosaceus SH-10 Isolated from the Hard Clam Meretrix meretrix Shikhae (백합(Meretrix meretrix)식해에서 분리한 Pediococcus pentosaceus SH-10의 생균제적 특성)

  • Song, Hyun-Jung;Kim, Kang-Jin;Kim, Hee-Dai;Yoo, Jung-Hee;Koo, Jae-Geun;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.605-611
    • /
    • 2011
  • This study examined the suitability of characteristics of potential strains of probiotic bacteria. Among 25 lactic acid bacteria isolated from Korean traditional fermented food, the Hard Clam Meretrix meretrix Shikhae, the SH-10 strain, which exhibited superior resistance to low pH and bile salts, was selected as a potential probiotic bacteria. By examining carbohydrate utilization, morphological properties, and the 16S rRNA gene sequence, the SH-10 strain was identified as Pediococcus pentosaceus (hereafter, P. pentosaceus SH-10). P. pentosaceus SH-10 was resistant to amikacin, cefotetan, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, and vancomycin. Tests of antimicrobial activities against pathogens such as Bacillus cereus, Listeria monocytogenes, Salmonella choleraesuis, and Staphylococcus aureus, indicated that P. pentosaceus SH-10 inhibited the growth of pathogenic bacteria. These results suggest that P. pentosaceus SH-10 can be developed as a probiotic bacteria.

Serotypes, antimicrobial resistance of Salmonella spp. and plasmid profiles, phage types, PFGE of S. Enteritidis and S. Typhimurium isolated from ducks in Daegu-Gyeongbuk province (대구.경북지역 오리 유래 Salmonella속 균의 혈청형, 항균제 내성 및 S. Enteritidis와 S. Typhimurium의 plasmid profiles, phage types 및 PFGE)

  • Cho, Jae-Keun;Kang, Min-Su;Kim, Ki-Seuk
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.3
    • /
    • pp.217-226
    • /
    • 2011
  • Salmonella spp. is of increasing public health concern as causative pathogens of food poisoning. The aim of this study was to investigate the serotypes and antimicrobial resistance pattern of Salmonella spp. isolated from duck farms in Daegu-Gyeongbuk province. Also, S. Enteritidis and S. Typhimurium isolates were further examined for plasmid analysis, phage typing and pulsed-field gel electrophoresis (PFGE). A total of 34 Salmonella spp. (16.4%) were isolated from duck farms and ten serotypes were identified. The predominant serotypes were S. Typhimurium (23.5%) S. Fyris (17.6%) and S. Haardt (11.8%), S. Agona and S. Enteritidis (respectively 8.8%). Of 34 Salmonella isolates, 15 (44.1%) isolates were resistant to at least one antimicrobial agent and multiple resistance (resistance to more than 4 drugs) was observed in 9 strains (26.5%). The high resistance was found to streptomycin (32.4%), tetracycline (29.4%), ampicillin, kanamycin and nalidixic acid (respectively, 26.5%), all Salmonella isolates were susceptible to cefoxitin, cefotaxime, gentamicin, amikacin and ciprofloxacin. All S. Enteritidis and S. Typhimurium isolates were found to contain only one plasmid (ca. 54 or 55kb, respectively). Among the S. Enteritidis isolates, two phage types were found, PT32a and PT1c, respectively, one isolates did not react with any of the phages used. Whereas, all S. Typhimurium isolates were RDNC (reacts but does not conform). PFGE showed to be a useful typing method better than plasmid analysis and phage typing for discrimination of isolates especially, S. Typhimurium isolates. Our results indicated that the serotypes of Salmonella isolates are widely distributed in duck farms, further epidemiological studies should be carried out.

Identification and Antibiotic Susceptibility of the Bacteria from Non-odontogenic Infectious Lesions

  • Kim, Yong Min;Kim, Jae-Jin;Kim, Mija;Park, Soon-Nang;Kim, Hwa-Sook;Kook, Joong-Ki;Kim, Hak Kyun
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2014
  • The purpose of this study was to isolate and identify bacteria from the 4 patients with non-odontogenic infectious lesions (mucormycosis, chronic inflammation from wound infection, and two actinomycosis) and determine their antimicrobial susceptibility against eight antibiotics. Bacterial culture was performed under three culture conditions (anaerobic, $CO_2$, and aerobic incubator). The bacterial strains were identified by 16S rRNA gene (16S rDNA) sequence comparison analysis method. For investigating the antimicrobial susceptibility of the bacteria against eight antibiotics, penicillin G, amoxicillin, tetracycline, cefuroxime, erythromycin, clindamycin, vancomycin, and Augmentin$^{(R)}$ (amoxicillin + clavulanic acid), minimum inhibitory concentration (MIC) measurement was performed using broth microdilution assay. Nosocomial pathogens such as Enterococcus faecalis, Klebsiella pneumoniae, Bacillus subtilis, and Neisseria flavescens were isolated from mucormycosis. Veillonella parvula, Enterobacter hormaechei, and Acinetobacter calcoaceticus were isolated from chronic inflammatory lesion. Actinomyces massiliensis was isolated from actinomycosis in parotid gland. Capnocytophaga ochracea was isolated from actinomycosis in buccal region in anaerobic condition. There was no susceptible antibiotic to all bacteria in mucormycosis. Tetracycline was susceptible to all bacteria in chronic inflammation. C. ochracea was resistant to vancomycin and penicillin G; and other antibiotics showed susceptibility to all bacteria in actinomycosis. The results indicated that the combined treatment of two or more antibiotics is better than single antibiotic treatment in mucormycosis, and penicillin is the first recommended antibiotic to treat actinomycosis.