• Title/Summary/Keyword: Resistant pathogens

Search Result 384, Processing Time 0.029 seconds

Diseases of Aquaculture Animals and Prevention of Drug Residues (양식어류의 질병과 수산동물용 의약품의 잔류방지 대책)

  • Heo, Gang-Joon;Shin, Kwang-Soon;Lee, Mun-Han
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 1992.07a
    • /
    • pp.7-19
    • /
    • 1992
  • Fish pathology is one of the main scientific bases upon which this expansion in aquaculture has been dependent and requires a wide knowledge of the environmental constraints, the physiology and characteristics of the various pathogens, the responses of the host and the methods by which they may be controlled. The primary disease and parasite problems in aquaculture animals relate to viral, bacterial, fungal and protozoan epizootics. Parasitic nematodes, trematodes and cestodes are commonly found in aquaculture animals, but seldom are they present in concentrations sufficinet to cause significant problems. When an epizootic does occur and chemical treatment is indicated, the appropriate chemical must be selected and properly applied. We have antibiotics, sulfa, nitrofuran and other chemicals for treatment of fish diseases. Some may be mixed with the fred during formulation, added to the pellets of feed as a surface coating, given in the dorm of an injection or used as a bath. Even though a drug or chemical has been officially approved for use in aquaculture, the substance should never be used unless there is a clear need. Some of the reasions for this view are as follows: (1) the constant use of antibiotics can lead to the development of resistant strains of bacteria, (2) biofilter efficiency may be impaired or destroyed by chemicals added to closed recirculating water systems, and (3) the injudicious use of chemicals can have a damaging effect on the environment as well as on human.

  • PDF

Formulation of Ceftriaxone Conjugated Gold Nanoparticles and Their Medical Applications against Extended-Spectrum β-Lactamase Producing Bacteria and Breast Cancer

  • El-Rab, Sanaa M.F. Gad;Halawani, Eman M.;Hassan, Aziza M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1563-1572
    • /
    • 2018
  • Gold nanoparticles (AuNP) and their conjugates have been gaining a great deal of recognition in the medical field. Meanwhile, extended-spectrum ${\beta}$-lactamases (ESBL)-producing bacteria are also demonstrating a challenging problem for health care. The aim of this study was the biosynthesis of AuNP using Rosa damascenes petal extract and conjugation of ceftriaxone antibiotic (Cef-AuNP) in inhibiting ESBL-producing bacteria and study of in vitro anticancer activity. Characterization of the synthesized AuNP and Cef-AuNP was studied. ESBL-producing strains, Acinetobacter baumannii ACI1 and Pseudomonas aeruginosa PSE4 were used for testing the efficacy of Cef-AuNP. The cells of MCF-7 breast cancer were treated with previous AuNP and Cef-AuNP at different time intervals. Cytotoxicity effects of apoptosis and its molecular mechanism were evaluated. Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy established the formation of AuNP and Cef-AuNP. Transmission electron microscope demonstrated that the formed nanoparticles were of different shapes with sizes of 15~35 nm and conjugation was established by a slight increase in size. Minimum inhibitory concentration (MIC) values of Cef-AuNP against tested strains were obtained as 3.6 and $4{\mu}g/ml$, respectively. Cef-AuNP demonstrated a decrease in the MIC of ceftriaxone down to more than 27 folds on the studied strains. The biosynthesized AuNP displayed apoptotic and time-dependent cytotoxic effects in the cells of MCF-7 at a concentration of $0.1{\mu}g/ml$ medium. The Cef-AuNP have low significant effects on MCF-7 cells. These results enhance the conjugating utility in old unresponsive ceftriaxone with AuNP to restore its efficiency against otherwise resistant bacterial pathogens. Additionally, AuNP may be used as an alternative chemotherapeutic treatment of MCF-7 cancer cells.

High Resolution Whole Genome Multilocus Sequence Typing (wgMLST) Schemes for Salmonella enterica Weltevreden Epidemiologic Investigations

  • Tadee, Pakpoom;Tadee, Phacharaporn;Hitchings, Matthew D.;Pascoe, Ben;Sheppard, Samuel K.;Patchanee, Prapas
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.162-170
    • /
    • 2018
  • Non-typhoidal Salmonella is one of the main pathogens causing food-borne illness in humans, with up to 20% of cases resulting from consumption of pork products. Over the gastroenteritis signs, multidrug resistant Salmonella has arisen. In this study, pan-susceptible phenotypic strains of Salmonella enterica serotype Weltevreden recovered from pig production chain in Chiang Mai, Thailand during 2012-2014 were chosen for analysis. The aim of this study was to use whole genome sequencing (WGS) data with an emphasis on antimicrobial resistance gene investigation to assess their pathogenic potential and genetic diversity determination based on whole genome Multilocus Sequence Typing (wgMLST) to expand epidemiological knowledge and to provide additional guidance for disease control. Analyis using ResFinder 3.0 for WGS database tracing found that one of pan-susceptible phenotypic strain carried five classes of resistance genes: aminoglycoside, beta-lactam, phenicol, sulfonamide, and tetracycline associated genes. Twenty four and 36 loci differences were detected by core genome Multilocus Sequence Typing (cgMLST) and pan genome Multilocus Sequence Typing (pgMLST), respectively, in two matching strains (44/13 vs A543057 and A543056 vs 204/13) initially assigned by conventional MLST and Pulsed-field Gel Electrophoresis (PFGE). One hundread percent discriminant ability can be achieved using the wgMLST technique. WGS is currently the ultimate molecular technique for various in-depth studies. As the findings stated above, a new of "gold standard typing method era" for routine works in genome study is being set.

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

  • Cho, Jaeyong;Hwang, In-Sok;Choi, Hyemin;Hwang, Ji Hong;Hwang, Jae-Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1457-1466
    • /
    • 2012
  • Antimicrobial peptides (AMPs) exert antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi, and viruses by various mechanisms. AMPs commonly possess particular characteristics by harboring cationic and amphipathic structures and binding to cell membranes, resulting in the leakage of essential cell contents by forming pores or disturbing lipid organization. These membrane disruptive mechanisms of AMPs are possible to explain according to the various structure forming pores in the membrane. Some AMPs inhibit DNA and/or RNA synthesis as well as apoptosis induction by reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Specifically, mitochondria play a major role in the apoptotic pathway. During apoptosis induced by AMPs, cells undergo cytochrome c release, caspase activation, phosphatidylserine externalization, plasma or mitochondrial membrane depolarization, DNA and nuclei damage, cell shrinkage, apoptotic body formation, and membrane blebbing. Even AMPs, which have been reported to exert membrane-active mechanisms, induce apoptosis in yeast. These phenomena were also discovered in tumor cells treated with AMPs. The apoptosis mechanism of AMPs is available for various therapeutics such as antibiotics for antibiotic-resistant pathogens that resist to the membrane active mechanism, and antitumor agents with selectivity to tumor cells.

Isolation and Antimicrobial Drug Susceptibility of Mastitic Pathogens from Dairy Cattles with Clinical Mastitis in Gyeongnam South Area (경남 남부지방에서 임상형 유방염의 원인균 분리 및 약제 감수성 시험)

  • 김충희;김곤섭;허정호;정명호;김국헌;조명희;이국천;류재두;하대식
    • Journal of Veterinary Clinics
    • /
    • v.20 no.2
    • /
    • pp.177-184
    • /
    • 2003
  • The present study was conducted to investigate isolation and antimicrobial drug susceptibility of clinical mastitic milking total 610 (897 quaters) dairy cattles from 36 dairy farms in Gyeongnam south area (Cosung, Masan) during the period from March 1999 to August 2002. The results obtained were summerized as follows . 1. Incidence of bacterial infection in four quaters was showed that right anterior quarter was 178(19.8%), right posterior quarter was 292(32.6%), left anterior quarter was 148 (16.2%), and left posterior quarter was 279 (31.1%), respectively. Isolation rate of posterior two quarters was higher 2 times than anterior two quarters. 2. Incidence of double infections of 897 clinical mastitic milk were showed that single infection was 549 (61.2%), double infection was 167(18.6%), triple infection was 9(1%) and no isolation was 172(19.2%). 3. Isolation of infected etiologic bacteria was showed that Streptococci spp., was 267(31%), Staphylococci spp., was 267(41%), S aureus, was 48(5.6%), G(-) bacillus was 126(5.6%), and Corynebactrium spy. was 52(6%), respectively, from total 861 samples. 4. The results of antimicrobial drug susceptibility of all isolates were showed that Streptococci spp., Staphylococci spp., S aureus, (G)(-) bacillus, and Corynebactrium spp. were susceptible to cefuroxime, cefoperazone, amoxicillin, cefazolin, ampicilin, penicillin, gentamicin, erythromycin, cloxacilin, ciprofloxacin, sulfamethoxasole/trimetoprim, teteracyclin, and norfloxacin (> 70%), but some of them were resistant to neomycin, streptomycin colistin, and cephalothin(> 60). 5. The results of drug susceptibility obtained from each farms had different susceptibility, even though, etiological microorganisms were same in each farms.

Optimum Spray Program of Preventive Fungicides for the Control of Postharvest Fruit Rots of Kiwifruit (참다래 저장병 예방약제 최적 살포 체계 확립)

  • Koh, Young-Jin;Lee, Jae-Goon;Hur, Jae-Seoun;Park, Dong-Man;Jung, Jae-Sung;Yu, Yong-Man
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.205-208
    • /
    • 2003
  • Fungicides of tebuconazole wp, iprodione wp and flusilazole wp were applied for the control of postharvest fruit rots of kiwifruit (Actinidia deliciosa) in the field in 2000 and 2001. More than 3 consecutive applications of these fungicides from the late June with 10-day-interval successfully controlled the diseases. It was found in the field trial in 2002 that 4 consecutive spays from mid of June with 10-day-interval was found to be the most effective application program for tebuconazole wp, iprodione wp and flusilazole wp, The results suggested that currently registered fungicides of benomyl wp and thiophanate-methyl wp can be substituted by tebuconazole wp, iprodione wp and flusilazole wp for the control of the diseases in Korea. Use of these fungicides can restrain emergence of fungicide resistant strains of postharvest fruit rot pathogens with benefit of reduced application of chemicals for food safety and environmental conservation.

Population Structure and Race Variation of the Rice Blast Fungus

  • Seogchan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Worldwide, rice blast, caused by Magnaporthe grisea (Hebert) Barr. (anamorph, Pyricularia grisea Sacc.), is one of the most economically devastating crop diseases. Management of rice blast through the breeding of blast-resistant varieties has had only limited xuccess due to the frequent breakdown of resistance under field conditions (Bonman etal., 1992; Correa-Victoria and Zeigler, 1991; Kiyosawa, 1982). The frequent variation of race in pathogen populations has been proposed as the principal mechanism involved in the loss of resistance (Ou, 1980). Although it is generally accepted that race change in M. grisea occurs in nature, the degree of its variability has been a controversial subject. A number of studies have reported the appearance of new races at extremely high rates (Giatgong and Frederiksen, 1968; Ou and Ayad, 1968; Ou et al., 1970; Ou et al., 1971). Various potential mechanisms, including heterokaryosis (Suzuki, 1965), parasexual recombination (Genovesi and Magill, 1976), and aneuploidy (Kameswar Row et al., 1985; Ou, 1980), have been proposed to explain frequent race changes. In contrast, other studies have shown that although race change could occur, its frequency was much lower than that predicted by earlier studies (Bonman et al., 1987; Latterell and Rossi, 1986; Marchetti et al., 1976). Although questions about the frequency of race changes in M. grisea remain unanswered, the application of molecular genetic tools to study the fungus, ranging from its genes controlling host specificity to its population sturctures and dynamics, have begun to provide new insights into the potential mechanisms underlying race variation. In this review we aim to provide an overview on (a) the molecular basis of host specificity of M. grisea, (b) the population structure and dynamics of rice pathogens, and (c) the nature and mechanisms of genetic changes underpinning virulence variation in M. grisea.

  • PDF

Host-Induced gene silencing of fungal pathogenic genes confer resistance to fungal pathogen, Magnaporthe Oryzae in rice

  • Jin, Byung Jun;Chun, Hyun Jin;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.134-134
    • /
    • 2017
  • Recently, host-induced gene silencing (HIGS) system has been successfully applied into development of resistant crops against insects, fungal and viral pathogens. To test HIGS-mediated resistance in rice against rice blast fungus, Magnaporthe oryzae, we first tested possibility of movement of small non-coding RNA from rice cells to rice blast fungus. The rice blast fungus expressing GFP transgene were inoculated to transgenic rice plants ectopically expressing dsRNAi construct targeting fungal GFP gene. Expression of dsRNAi construct for GFP gene in transgenic plants significantly suppressed GFP expression in infected fungal cells indicating that small RNAs generated in plant cells can move into infected fungal cells and efficiently suppress the expression of fungal GFP gene. Consistent with these results, expression of dsRNAi constructs against 3 fungal pathogenic genes of M. oryzae in transgenic rice specifically and efficiently suppressed not only the expression of fungal pathogenic genes, but also fungal infection. The conidia of M. oryzae applied on leaf sheath of transgenic rice expressing dsRNAs against 3 fungal pathogenic genes showed abnormal development of primary hyphae and malfunction of appressorium, which is consistent with the phenotypes of corresponding fungal knock-out mutants. Taken these results together, here, we suggest a novel strategy for development of antifungal crops by means of HIGS system.

  • PDF

Safety of the genus Enterococcus and the development of food fermentation starters in Korea: Current status and future steps (Enterococcus 속 박테리아의 안전성과 식품발효용 종균 개발의 방향성)

  • Lee, Jong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • Bacteria of the genus Enterococcus are of importance in food fermentations as well as their use as probiotics in humans and livestock. However, they are also important nosocomial pathogens that cause infections. Some strains are resistant to multiple antibiotics and possess virulence factors. The role of Enterococcus species in disease has raised issues on their safety for use in foods or as probiotics. First, this review summarized the positive and negative traits of Enterococcus spp. to illustrate the controversial nature of this bacterial genus and discussed the current genomic approaches can eliminate pathogenic strains. Then, this review examined the current status of starter development for traditional food fermentations and the regulation on the approval of novel food microorganisms in Korea to point out problems in the regulation. Based on the conclusions from the studies on Enterococcus spp., we suggested the direction of safety assessment of novel food microorganisms in Korea.

Prediction of Cryptosporidium parvum Inactivation in Advanced Ozone Drinking Water Treatment with Lab Scale Experiments (실험실 규모 크립토스포리디움의 불활성화 실험을 통한 오존 고도정수처리 정수장에서 소독 효과 예측)

  • Cho, Min;Chung, Hyenmi;Kim, Reeho;Shon, Jinsik;Park, Sangjung;Yoon, Jeyong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • With the appearance of pathogenic microorganisms, which were resistant to free chlorine, the significant attention to the necessity of powerful alternative disinfection methods such as ozone, chlorine dioxide, LTV irradiation to inactivating pathogens has been increased in water treatment. Among these alternative disinfection methods, ozone is well known as strong biocidal method and the usage of ozone is also increasing in Korea. However, in Korea, there has been no report on the quantitative study of Cryptosporidium parvum with ozone and its evaluation in advanced drinking water treatments. This study reports on the methodology for predicting the ozone inactivation of Cryptosporidium parvum by ozone disinfection in advanced drinking water treatment. The method is based on the fact that a specific inactivation level of microorganisms is achieved at a unique value of ozone exposures, independent of ozone dose and type of water, and quantitatively described by a delayed Chick-Watson model. The required values ${\bar{C}}T$ for 2 log inactivation of Cryptosporidium parvum was $6.0mg/L{\cdot}min$ and $15.5mg/L{\cdot}min$ at $20^{\circ}C$ and $5^{\circ}C$, respectively. From this obtained Cryptosporidium parvum inactivation curves and calculated ${\bar{C}}T$ values of advanced drinking water treatment water in Korea with FIA (Flow injection alaysis), we can predict that water treatment plant can achieve a 1.1~1.8 log inactivation and 0~0.4 log inactivation at $20^{\circ}C$ and $5^{\circ}C$, respectively. This methodology will be useful for drinking water treatment plants which intend to evaluate the disinfection efficiencies of their ozonation process without full scale test and direct experiments with Cryptosporidium parvum.