• Title/Summary/Keyword: Resistant dry days

Search Result 33, Processing Time 0.024 seconds

Laboratory Production of Oospores in Pseudoperonospora humuli (Pseudoperonospora humuli의 실험실상의 난포자 형성)

  • ;Robert E. Klein
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.618-621
    • /
    • 1998
  • In pseudoperonospora humuli, the cause of hop downy mildew, environmental and host factors affecting laboratory production of oospore were examined. After 7 days incubation of leaf disk inoculated with sporangia on water, additional incubations were carried out under different conditions of temperature and moisture. Oospore production was also compared between very susceptible (Nugget) and resistant (Fuggle) hop cultivars. Oospores were not produced at 18$^{\circ}C$ regardless of other incubation conditions. Leaf disks failed to produce oospore when incubated on water for up to 18 days at 8$^{\circ}C$. No oospores formed on infection sites without necrosis. However, abundant oospores were produced at necrotized infection sites when inoculated leaf disk incubated on dry filter paper for 5 days at 8$^{\circ}C$. Both susceptible and resistant hop cultivars produced abundant oospores. In the measurement of optimal temperature for oospore production, oospores were produced at 6 to 12$^{\circ}C$ Most abundant oospores were produced at 8$^{\circ}C$. We suggest that proper combination of low temperature, dryness and necrosis may be a critical environmental factors for oospore production of P. humuli.

  • PDF

Physiological Responses of Soybean Cultivars to Fusarium solani f. sp. glycines Causing Sudden Death Syndrome

  • Joon Hyeong, Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.373-381
    • /
    • 1999
  • Six soybean cultivars having different SDS susceptibility were planted with sorghum seedinoculum infested with F. solani isolate 171 in the greenhouse. First leaf symptoms appeared on unifoliar leaves at 9 days after inoculation and all cultivars showed the typical leaf symptoms at 13 days after inoculation, when trifoliar leaves emerged. Leaf symptoms development in susceptible cultivars was faster than in resistant cultivars. Leaf symptom severities during the period of 25 to 29 days after inoculation showed a significant difference between cultivars which had SDS resistance and sus ceptibility. In this period, area under the diseaseprogress curve (AUDPC) of Hartz 6686 was the highest and that of PI 520733 was the lowest. SDS caused serious damage to the growth of soybean in all cultivars. Average reductions of growth rate of root fresh weight and dry weight were greater than those of plant tops. Duyu-kong showed less severe leaf symptoms than that of SDS suscetible cultivars; however, average growth rate of plants top and roots of this cultivar was less but not significantly different than those of SDS susceptible cultivars. In all cultivars, as severity of leaf symptoms increased, plant top weight decreased. Root rot symptoms were observed in all cultivars before leaf symptoms appeared. Average proportions of tap root reddish-brown discoloration of all cultivars was up to 75 % at 15 days after inoculati on; however there was no significant differenc between cultivars at each rating date. Appearances of leaf symptoms on leaves varied in each cultivar. SDS resistant cultivars had a significantly higher level of crinkling than susceptible cultivars and SDS susceptible cultivars had a significantly higher level of necrosis than resistant cultivars. Further study will be needed to identify the relationships between the physiological growth rate and SDS severities in soybeans.

  • PDF

Tolerance of Korean Cronobacter spp. (Enterobacter sakazakii) Isolates to Dessication (국내에서 분리한 Cronobacter spp.(Enterobacter sakazakii)의 건조내성 특성)

  • Lee, Eun-Jin;Ryu, Tae-Hwa;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.681-686
    • /
    • 2009
  • Cronobacter spp. (Enterobacter sakazakii) is known to be highly resistant to dry conditions than any other Enterobacteriaeae. In this study, one hundred and ten Korean Cronobacter isolates were characterized to find out their survival characteristics under conditions of desiccation and humidity. Thirty percentage strains of the isolates showed high resistance to desiccation exposed on the metal surface for eight hours by half survival of the initial number, whileas less than 10% strains showed dry sensitivity by less one log scale survival among seven log scales. Finally, more than 90% of the strains consisted of dry-resistant and dry-intermediate groups. The same tendencies were evident in a 15-day exposure. Dry-resistant and intermediate strain groups showed 3 log scale survival among 5 log initial numbers in the powdered infant formula for 30 days, which were more resistant than on the above metal surface exposed. So, almost the isolate strains showed high resistance to dry condition. Dry-resistant and intermediate groups exposed on the metal surface formed a biofilm at the beginning, and the dry-sensitive group showed biofilm formation mainly only after a 7-day exposure. However, without a time difference in formation of biofilm, the dry-resistant and sensitive isolates seemed to similar biofilm formation activity. Most of the isolates showed very low survival at 75% relative humidity in 48 hours; however, they showed high resistance by 60% survival at 40% relative humidity. The Cronobacter isolates showed high resistance to desiccation on the metal surface and in the powdered infant formula, but low survival at high relative humidity. Therefore, high humidity may be a control method for Cronobacter in food processing environments.

Manufacturing and Quality Characteristics of Low Calori Kimchi Noodle (저열량 김치국수의 제조 및 품질특성)

  • Kim, Hyong-Yol;Lim, Heung-Youl
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.3
    • /
    • pp.315-322
    • /
    • 2005
  • Kimchi noodle have a original taste and characteristics. This noodle was used for sour kimchi, kimchi taste powder, red bean fiber and emulsified oil etc. with RS(resistant starch) premix as blended wheat flour mixed to resistant starch. For manufacturing process of this kimchi mixed dry noodle, suitable kimchi of $pH3.70{\sim}3.80$ was required storage period during $4{\sim}5days$ at room temperature. At this point, the suitable treating amount of sour kimchi was about 20%(w/w) level. Manufacturing of kimchi noodle could be at the suitable manufacturing condition from use of kimchi taste powder and red bean fiber etc. Calori of this kimchi noodle was 308.17Kcal/100g as low level than wheat flour noodle as 355.82Kcal/100g, decreasing effect of calori was about 13.39%. This kimchi noodle had a characteristic sour and hot taste, that wasn't required the special seasoning and/or soup at this result.

Varietal Difference in Lodging - related Characteristics in Rice (벼 도복관계형질 특성의 품종간 차이)

  • 송동석;김용재;임준택;김진호;이성춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.395-404
    • /
    • 1996
  • This experiment was to evaluate the growth characteristics of lodging resistance cultivated at sandbed in rice varieties. Five varieties were used in this studies. The leaf area, leaf dry weight, culm dry weight and total dry weight of cultivated rice seedling at sandbed showed the maximal values at heading stage, but decreased according to growth development. The number of newly developed roots of rice seedlings cultivated at sand pot were the most at the 30 days seedling stage, but those were decreasing at 40 to 45 days seedling stage. Cheongmyungbyeo and Dongjinbyeo showed the most vigor in newly developed roots. The bending moment at breaking of rice internodes were the largest at the 4th node, but decreased at the top internodes. Cheongmyungbyeo and Dongjinbyeo were proved lodging resistant varieties by the bending moment. The weight of culm base was positively correlated with bending moment at breaking of rice culm, but lodging index was negatively correlated weight of culm base and root dry weight, respectively.

  • PDF

Effect of Non-starch Polysaccharides and Resistant Starch on Mucin Secretion and Endogenous Amino Acid Losses in Pigs

  • Morel, Patrick C.H.;Melai, J.;Eady, S.L.;Coles, G.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1634-1641
    • /
    • 2005
  • Generally, dietary fibre (DF) includes lignin, non-starch polysaccharides (NSP) and resistant starch (RS). In monogastric species, low levels of dietary fibre in the diet are associated with various diseases and high levels reduce nutrient digestibilities. In this study, the effects of different types and levels of NSP (soluble: $\beta$-glucan, insoluble cellulose) and resistant starch on mucin secretion and endogenous nitrogen and amino acid losses in pigs were investigated. A total of 25 five-week-old weaner pigs (9.5 kg${\pm}$1.5 kg), were randomly allocated to each of five experimental diets. Different levels of purified barley $\beta$-glucan (BG) extract (5 or 10% of $Glucagel^{(R)}$ $\beta$-glucan, providing 4 or 8% of BG in the diet), and resistant starch (RS) (8.3 or 16.6% of Hi-$Maize^{TM}$, providing 5 or 10% RS in the diet) were substituted for wheat starch in a purified diet in which enzymatically-hydrolysed casein was the sole source of protein. The diets were fed for 21 days. No statistically significant difference between treatments (p>0.05) was observed for growth performance and organs weights. No difference in ileal starch digestibility was observed between pigs on the cellulose or $\beta$-glucan diets. However, as the level of resistant starch in the diet increased the ileal starch digestibility decreased (p<0.05). The inclusion of resistant starch in the diet (5 or 10%) did not increase mucin production when compared with the cellulose-only diet. However, as the level of beta-glucan in the diet increased, both crude mucin in the digesta dry matter and per kg dry matter intake increased (p<0.05). Pigs fed the diet containing 8% of beta-glucan had higher endogenous loss flow than those fed the diets including 5 or 10% of resistant starch or 4% of $\beta$-glucan. In conclusion, dietary inclusion of resistant starch increased the level of starch reaching the large intestine without any effect on mucin secretion, or endogenous nitrogen or amino acid losses content in the small intestine. The addition of $\beta$-glucan to a diet containing cellulose increases both mucin secretion and endogenous amino acid and nitrogen losses in the small intestine.

Growth and Physiological Responses of Quercus acutissima Seedling under Drought Stress

  • Lim, Hyemin;Kang, Jun Won;Lee, Solji;Lee, Hyunseok;Lee, Wi Young
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.363-370
    • /
    • 2017
  • In this study, Quercus acutissima seedlings were subjected to drought for 30 days then analyzed to determine their response to water deficit. The growth phenotype, chlorophyll fluorescence response, fresh weight, dry weight, photosynthetic pigment levels, soluble sugar content, and malondialdehyde (MDA) were measured to evaluate the effects of drought on plant growth and physiology. The growth phenotype was observed by infrared (IR) digital thermal imaging after 30 days of drought treatment. The maximum, average, and minimum temperatures of drought-treated plant leaves were $1-2^{\circ}C$ higher than those of the control. In contrast, the fresh and dry weights of the dehydrated leaves were generally lower than those of the control. There were no significant differences between treatments in terms of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid levels. Nevertheless, for the drought treatment, the $F_v/F_m$ and $F_v/F_o$ ratios (chlorophyll fluorescence response) were lower than those for the control. Therefore, photosynthetic activity was lower in the dehydrated plants than the control. The drought-stressed Q. acutissima S0536 had lower soluble sugar (glucose and fructose) and higher MDA levels than the controls. These findings may explain the early growth and physiological responses of Q. acutissima to dehydration and facilitate the selection of drought-resistant tree families.

Evaluation of Crossability, Seed Dormancy and Overwintering Ability in Glufosinate Ammonium-Resistant GM Rice and Their Hybrids with Non-GM and Weedy Rice

  • Lee, Seung-Yeob;Kim, Min-Soo;Kim, Hyo-Jin;Han, Seong-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • This study was conducted to investigate the crossability, seed dormancy and overwintering ability of rice plant in GM (glufosinate ammonium-resistant lines. Iksan 483 and Milyang 204) and non-GM (their parents) or red rice (Andongaengmi). Seed-setting rate was not significantly different between GM and non-GM rice varieties. Iksan 483 and Milyang 204 showed the similar level of seed germination rate from 30 to 50 days after heading as compared to non-GM rice varieties. After overwintering in paddy field, seed germination rate of GM and non-GM rice varieties ranged from 14.3 % to 57.6 % in dry soil condition, but there was no germination in wet-soil except red rice. The result in wet-soil condition may help to set up a strategy for reducing the risk of gene flow of transgene via dispersal of seeds of GM plants. The crossability, seed dormancy and seed overwintering of Iksan 483 and Milyang 204, herbicide resistant GM rice varieties, were not significantly different compared to non-GM rice varieties. The results might be helpful to reduce the risk of transgene dispersal from GM crop via seeds and pollens.

Atmospheric Corrosion Process for Weathering Steel

  • Nagano, Hiroo;Yamashita, Masato
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • Steel is generally not corrosion resistant to water with formation of non protective rusts on its surface. Rusts are composed of iron oxides such as $Fe_3O_4$, $\alpha-$, $\beta-$, $\gamma-$and ${\delta}-FeOOH$. However, steel, particularly weathering steel containing small amounts of Cu, Ni and Cr etc., shows good corrosion resistance against rural, industrial or marine environment. Its corrosion rate is exceedingly small as compared with that of carbon steel. According to the exposure test results undertaken in outdoor environments, the atmospheric corrosion rate for weathering steel is only 1 mm for a century. Atmospheric corrosion for steels proceeds under alternate dry and wet conditions. Dry condition is encountered on steel surface on fine or cloudy days, and wet condition is on rainy or snowy days. The reason why weathering steel shows superior atmospheric corrosion resistance is due to formation of corrosion protective rusts on its surface under very thin water layer. The protective rusts are usually composed of two layer rusts; the upper layer is ${\gamma}-FeOOH$ termed as lepidocrocite, and inner layer is nano-particle ${\alpha}-FeOOH$ termed as goethite. This paper is aimed at elucidating the atmospheric corrosion mechanism for steel in comparison with corrosion in bulky water environment by use of empirical data.The summary is as follows: 1. No corrosion protective rusts are formed on steel in bulky water. 2. Atmospheric corrosion for steel is the corrosion under wetting and drying conditions. Corrosion and passivation occur alternately on steel surface. Steel, particularly weathering steel with small amounts of alloying elements such as Cu, Ni and Cr etc. enhances forming corrosion protective rusts by passivation.

Fermentation Kinetics for Production of Carotenoids by ${\beta}$-ionone Resistant Mutant of Xanthophyllomyces dendrorhous (Xanthophyllomyces dendrorhous 변이군주에 의한 Carotenoids 생산 발효의 특성 연구)

  • Park, Ki-Moon;Kim, Young-Jun;Song, Min-Woo;Kang, Seog-Jin;Lee, Jae-Heung
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.286-291
    • /
    • 2006
  • Various ${\beta}$-ionone resistant mutants were isolated from the wild-type red yeast Xanthophyllomyces dendrorhous KCTC 7704. Although the growth of X. dendrorhous KCTC 7704 was strongly inhibited at 0.025 mM ${\beta}$-ionone, one of the ${\beta}$-ionone resistant mutants isolated at 0.1 mM ${\beta}$-ionone by NTG mutagenesis showed rather 70% of relative survival at 0.15 mM ${\beta}$-ionone. Fermentation kinetics study with the mutant was carried out at $20^{\circ}C$ for 4 days in 300-mL baffled flasks. The mutant yielded up to 2.3-fold higher carotenoids content(viz. $1.2{\mu}g$ of total carotenoids per mg of dry cells) compared with the wild-type strain. The production of metabolites such as organic acids could be neglected. Studies on the kinetics with various carbon substrates revealed both an increase in final dry cell mass and a higher total carotenoids content in cell mass with glucose when compared to fructose or sucrose. As a further part of study, the effect of pH on the fermentation kinetics was investigated in glucose-limited chemostat at a dilution rate of $0.04h^{-1}$. When compared to steady-state kinetic parameters obtained at pH 4.0, a significant reduction in cell concentration at pH 3.0 and a lower carotenoids content at pH 5.2 were evident.