• 제목/요약/키워드: Resistant Genes

검색결과 844건 처리시간 0.031초

Methicillin 내성 Staphylococcus aureus의 검출을 위한 분자유전학적 기법에 관한 연구 (Comparison between Dot Blot Hybridization and Southern Blot Hybridization in Detecting Methicillin Resistant Staphylococcus aureus)

  • 조태흠;김민정;오양효
    • 생명과학회지
    • /
    • 제9권4호
    • /
    • pp.358-367
    • /
    • 1999
  • Thirty strains of methicillin resistant Staphylococcus aureus were obtained from the clinical isolates. In order to investigate the pursuit of the pathogens of nosocomial infection, these strains were studied for antibiotic sensitivity as well as its resistant pattern. Among the methods of hybridization which directly confirm the specific antibiotic resistant genes by means of the recently developed specific probe DNA, dot blot hybridization and southern blot hybridization were performed and these two methods were compared in their sensitivity and specificity. Strains that is sensitive to cephalothin to the subject of methicillin resistant Staphylococcus aureus were in 43%. Those that are sensitive to cefoperazone and cefuroxime were 26% and 23%, respectively. In case of MIC, MIC50 of cefoperazone was 8 $\mu\textrm{g}$/$m\ell$, and MIC90 was 128 $\mu\textrm{g}$/$m\ell$ to be the lowest. As the results of plasmid DNA electrophoresis, most of methicillin resistant Staphylococcus aureus strains had more than 4 plasmids. These plasmids digested by BamHI, methicillin resistant Staphylococcus aureus is distributed as 10 fragments with the size of 65 kb to 1.5 kb. Dot blot hybridization were performed to examine the existence of mecA gene to show the detection rate of 50%. Southern blot hybridization were done to see if DNA bands which amplify the activity of digoxigenium-labeled probe by PCR were actually PCR products of mecA gene and it showed the detection rate of 53%. It can be concluded that the southern blot hybridization seemed to be better in sensitivity and specificity when it is compared with the results of dot blot hybridization.

  • PDF

A Procedure for Inducing the Occurrence of Rice Seedling Blast in Paddy Field

  • Qin, Peng;Hu, Xiaochun;Jiang, Nan;Bai, Zhenan;Liu, Tiangang;Fu, Chenjian;Song, Yongbang;Wang, Kai;Yang, Yuanzhu
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.200-203
    • /
    • 2021
  • Rice blast caused by the filamentous fungus Magnaporthe oryzae, is arguably the most devastating rice disease worldwide. Development of a high-throughput and reliable field blast resistance evaluation system is essential for resistant germplasm screening, resistance genes identification and resistant varieties breeding. However, the occurrence of rice blast in paddy field is easily affected by various factors, particularly lack of sufficient inoculum, which always leads to the non-uniform occurrence and reduced disease severity. Here, we described a procedure for adequately inducing the occurrence of rice seedling blast in paddy field, which involves pretreatment of diseased straw, initiation of seedling blast for the first batch of spreader population, inducing the occurrence of the second batch of spreader population and test materials. This procedure enables uniform and consistent infection, which facilitates efficient and accurate assessment of seedling blast resistance for diverse rice materials.

Transcriptome and Small RNAome Analyses Reveal the Association of pre-harvest Sprouting and Heat Stress Response in Rice (Oryza sativa L.)

  • Minsu Park;Woochang Choi;Sang-Yoon Shin;Yujin Kweon;Jihyun Eom;Minsun Oh;Chanseok Shin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2023년도 춘계학술대회
    • /
    • pp.157-157
    • /
    • 2023
  • Pre-harvest sprouting (PHS) in rice (Oryza sativa L.) is one of the main problems associated with seed dormancy. PHS causes yield loss and reduction of grain quality under unpredictable humid conditions at the ripening stage, thus affecting the economic value of the rice crop. To resolve this issue, it is important to understand the molecular mechanism underlying seed dormancy in rice. Recent studies have shown that seed dormancy is affected by a large number of genes associated with plant hormones. However, the effect of heat stress on seed dormancy and plant hormones is not well understood. In this study, we compared the PHS rate as well as the transcriptome and small RNAome of the seed embryo and endosperm of two different accessions of rice, PHS-susceptible rice (low dormancy) and PHS-resistant rice (high dormancy) under three different maturation stages. We identified and verified the candidate genes associated with seed dormancy and heat stress-related responses in rice using quantitative real-time PCR. We newly discovered hormone-related genes, heat shock protein-related genes, and miRNAs potentially involved in PHS. These findings provide a foundation for understanding the dynamics of transcriptome and small RNAome of hormone- and heat stress-related genes, which affect PHS during seed maturation.

  • PDF

An Efficient and Stable Method for the Transformation of Heterogeneous Genes into Cephalosporium acremonium Mediated by Agrobacterium tumefaciens

  • XU WEI;ZHU CHUNBAO;ZHU BAOQUAN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.683-688
    • /
    • 2005
  • A transformation system mediated by Agrobacterium tumefaciens is routinely used for the genetic engineering of plants. Here, we report an efficient and stable method for transformation of heterogeneous genes into an industrial Cephalosporium acremonium by using a similar transformation system established in plants. Both the phleomycin-resistant gene and vgb gene were used as screening markers to confirm the success of transformation by either Southern hybridization or PCR amplification. It was found that acetosyringone (AS) was necessary only for protoplast transformation and the heterogeneous genes transferred were integrated into the genome of C. acremonium. The transformation efficiency obtained with this system was much higher than the conventional techniques used for transformation of C. acremonium.

Update of genetic susceptibility in patients with Kawasaki disease

  • Yoon, Kyung Lim
    • Clinical and Experimental Pediatrics
    • /
    • 제58권3호
    • /
    • pp.84-88
    • /
    • 2015
  • Kawasaki disease (KD) is an acute systemic vasculitis that predominantly affects children, and can result in coronary artery lesions (CAL). A patient with KD who is resistant to treatment with intravenous immunoglobulin (IVIG) has a higher risk of developing CAL. Incomplete KD has increased in prevalence in recent years, and is another risk factor for the development of CAL. Although the pathogenesis of KD remains unclear, there has been increasing evidence for the role of genetic susceptibility to the disease since it was discovered in 1967. We retrospectively reviewed previous genetic research for known susceptibility genes in the pathogenesis of KD, IVIG resistance, and the development of CAL. This review revealed numerous potential susceptibility genes including genetic polymorphisms of ITPKC, CASP3, the transforming growth factor-${\beta}$ signaling pathway, B lymphoid tyrosine kinase, FCGR2A, KCNN2, and other genes, an imbalance of Th17/Treg, and a range of suggested future treatment options. The results of genetic research may improve our understanding of the pathogenesis of KD, and aid in the discovery of new treatment modalities for high-risk patients with KD.

Distribution of ddr (DNA damage response) Genes among Species of Deinococcus

  • Lim, Sangyong;Jung, Sunwook;Joe, Minho;Kim, Dongho
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.289-295
    • /
    • 2010
  • The bacterium Deinococcus radiodurans is one of the most resistant organisms to the effects of ionizing radiation and other DNA-damaging agents. In this study, distributions of 10 ddr (DNA damage response) genes were investigated in 8 species of Deinococcus by polymerase chain reaction (PCR). We have compared the sequences of ddr genes of D. radiodurans, D. geothermalis and D. deserti, and selected primers which are suitable for the detection of ddr in different species of Deinococcus. A sequence homology search and PCR assay showed that ddrO, which encodes a global regulator of the radiation-desiccation response, was most well conserved in the Deinococcus lineage.

Virulence Structure of Blumeria graminis f. sp. avenae Populations in Poland across 2014-2015

  • Cieplak, Magdalena;Terlecka, Katarzyna;Ociepa, Tomasz;Zimowska, Beata;Okon, Sylwia
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.115-123
    • /
    • 2021
  • The purpose of this study was to determine the virulence structure of oat powdery mildew (Blumeria graminis f. sp. avenae, Bga) populations in Poland collected in 2014 and 2015. Powdery mildew isolates were collected from 18 locations in Poland. In total, nine lines and cultivars of oat, with different mildew resistance genes, were used to assess virulence of 180 isolates. The results showed that a significant proportion of the Bga isolates found in Poland were virulent to differentials with Pm1, Pm3, Pm6, and Pm3 + Pm8 genes. In contrast Pm4, Pm5, Pm2, and Pm7 genes were classified as resistant to all pathogen isolates used in the experiment. Based on obtained results we can state that there are differences in virulence pattern and diversity parameters between sites and years, but clear trends are not deducible.

Current Status of Plasmodiophora brassicae Researches in Korea

  • Kim, Hong Gi;Lim, Yong Pyo
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.29-29
    • /
    • 2015
  • Clubroot disease is caused by the soil-born obligate plant pathogen Plasmodiophora brassicae. This pathogen can infect all cruciferous vegetables and oil crops, including Brassica rapa, B. oleracea, B. napus, and other Brassica species. Clubroot disease is now considered to be a major problem in Chinese cabbage production in China, Korea, and Japan. We collected several hundreds of P. brassicae infected galls from Korea, and isolated the single spore from the collection. For establishment of novel isolation, and mass-propagation methods for singe spore isolates of P. brassicae pathogen, we developed new filtration method using both cellulose nitrate filter and syringe filter. Accurate detection of P. brassicae pathogen in the field was done by using real-time PCR in the potential infested soil. When we tested the different pathogenicity on commercial Chinese cabbage varieties, P. brassicae from collected galls showed various morphological patterns about clubroot symptom on roots. To date, 8 CR loci have been identified in the B. rapa genome using the quantitative trait loci (QTL) mapping approach, with different resistant sources and isolates. We are trying to develop the molecular marker systems for detect all 8 CR resistant genes. Especially for the study on the interaction between pathogens and CR loci which are not well understood until now, genome wide association studies are doing using the sequenced inbred lines of Chinese cabbage to detect the novel CR genes.

  • PDF

Listeria Species in Broiler Poultry Farms: Potential Public Health Hazards

  • Dahshan, Hesham;Merwad, Abdallah Mohamed Amin;Mohamed, Taisir Saber
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1551-1556
    • /
    • 2016
  • Broiler meat production worldwide has been plagued by lethal food-poisoning bacteria diseases, including listeriosis. A fatality rate of 15.6% was recorded in human beings in the EU in 2015. During 2013, a total of 200 poultry farm samples, including litter, chicken breast, farm feed, and drinking water, were collected to generate baseline data for the characterization of the genus Listeria in broiler poultry farms. Listeria spp. were detected in a total of 95 (47.5%) poultry farm samples. The isolates of Listeria spp. included L. innocua (28.5%), L. ivanovii (12.5%), L. welshimeri (4.5%), and L. monocytogenes and L. seeligeri (1% each). Listeria spp. contamination rates were higher in farm feed (70%), followed by litter (52.5%), chicken breasts (42.2%), and drinking water (10%). Almost all Listeria spp. isolates were resistant to more than three classes of antibiotics (multidrug resistant). Besides this, we observed a significant resistance level to penicillin and fluoroquinolone drugs. However, lower resistance levels were recorded for broad-spectrum cephalosporins. The inlA, inlC, and inlJ virulence genes were detected in almost all of the L. monocytogenes isolates. Thus, food safety management approaches and interventions at all stages of the broiler rearing cycle were needed to control cross-contamination and the zoonotic potential of listeriosis.