• Title/Summary/Keyword: Resistance marker

Search Result 351, Processing Time 0.041 seconds

Generation of a Transformant Showing Higher Manganese Peroxidase (Mnp) Activity by Overexpression of Mnp Gene in Trametes versicolor

  • Yeo, Su-Min;Park, Nam-Mee;Song, Hong-Gyu;Choi, Hyoung-T.
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.213-218
    • /
    • 2007
  • Trametes versicolor has a lignin degrading enzyme system, which is also involved in the degradation of diverse recalcitrant compounds. Manganese-dependent peroxidase (MnP) is one of the lignin degrading enzymes in T. versicolor. In this study, a cDNA clone of a putative MnP-coding gene was cloned and transferred into an expression vector (pBARGPE1) carrying a phosphinothricin resistance gene (bar) as a selectable marker to yield the expression vector, pBARTvMnP2. Transformants were generated through genetic transformation using pBARTvMnP2. The genomic integration of the MnP clone was confirmed by PCR with bar-specific primers. One transformant showed higher enzyme activity than the recipient strain did, and was genetically stable even after 10 consecutive transfers on non-selective medium.

Effects of long double-stranded RNAs on the resistance of rock bream Oplegnathus fasciatus fingerling against rock bream iridovirus (RBIV) challenge

  • Kosuke, Zenke;Kim, Ki-Hong
    • Journal of fish pathology
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2010
  • To determine whether rock bream Oplegnathus fasciatus can be protected from rock bream iridovirus (RBIV) infection by intramuscular injection of long double-stranded RNAs (dsRNAs), we compared protective effect of virus-specific dsRNAs corresponding to major capsid protein (MCP), ORF 084, ORF 086 genes, and virus non-specific green fluorescent protein (GFP) gene. Furthermore, to determine whether the non-specific type I interferon (IFN) response was associated with protective effect, we estimated the activation of type I IFN response in fish using expression level of IFN inducible Mx gene as a marker. As a result, mortality of fish injected with dsRNAs and challenged with RBIV was delayed for a few days when comparing with PBS injected control group. However, virus-specific dsRNA injected groups exhibited no significant differences in survival period when compared to the GFP dsRNA injected group. Semi-quantitative analysis indicated that the degree of antiviral response via type I IFN response is supposedly equal among dsRNA injected fish. These results suggest that type I IFN response rather than sequence-specific RNA interference might involve in the lengthened survival period of fish injected with virus-specific dsRNAs.

Food-Grade Expression and Secretion Systems in Lactococcus

  • Jeong, Do-Won;Hwang, Eun-Sun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.485-493
    • /
    • 2006
  • Lactococcus species are noninvasive and nonpathogenic microorganisms that are widely used in industrial food fermentation and as well-known probiotics. They have been modified by traditional methods and genetic engineering to produce useful food-grade materials. The application of genetically modified lactococci in the food industry requires their genetic elements to be safe and stable from integration with endogenous food microorganisms. In addition, selection for antibiotic-resistance genes should be avoided. Several expression and secretion signals have been developed for the production and secretion of useful proteins in lactococci. Food-grade systems composed of genetic elements from lactic acid bacteria have been developed. Recent developments in this area have focused on food-grade selection markers, stabilization, and integration strategies, as well as approaches for controlled gene expression and secretion of foreign proteins. This paper reviews the expression and secretion signals available in lactococci and the development of food-grade markers, food-grade cloning vectors, and integrative food-grade systems.

Levels of organochlorine pesticides and PCB congeners in Korean human tissues

  • Yoo, Young-Chan;Lee, Sang-Ki;Yang, Ja-Youl;Kim, Ki-Wook;Lee, Soo-Yeun;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.283.2-283.2
    • /
    • 2002
  • Organochlorine pesticides and polychlorinated biphenyls (PCBs) have been used intensively in agriculture and industry for a long time. They belong to a group of contaminants whose occurrence in the environment is a serious concern to environmental chemists and toxicologists due to their resistance to degradation in the environment as well as their potential toxicity. Also. the lipophilic characteristics of these substances are responsible for their ability to bioaccumulate in tissues and organs rich in lipids of men and animals through food chain. Therefore, the measure of the levels of organochlorine pesticides and PCBs in human tissues are good markers in detemining the extent to exposure and evaluating the hazards. This study was preformed to compare concentrations of organochlorine pesticides(${\alpha}-BHC, {\beta}-BHC, {\gamma}-BHC, {\delta}-BHC$, p.p'-DDT,p.p'-DDD,p.p.'-DDE. endrin. dieldrin. aldrin) and seven marker PCBs(PCB nos. 28. 52. 101. 118. 138. 153. 180) in liver. kidney cortex, lung blood and adipose tissue collected at autopsies of 10men and 10 women using gas chromatography equipped with electron capture detector to express the data on a lipid adjusted basis. From the results, the significant differences in the levels of organochlorines of PCBs between sexes, districts where they had lived and ages were also investigated.

  • PDF

Progeny Analysis and Selection of Tomato Transformants with patII Gene linked to Inherent Disease Resistance Gene (제초제 저항성 유전자와 기존 병 저항성 유전자가 연관된 형질전환 토마토 개체 선발 및 후대분석)

  • Ahn, Soon-Young;Kang, Kwon-Kyoo;Yun, Hae-Keun;Park, Hyo-Guen
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.345-351
    • /
    • 2011
  • This study was carried out to develop a model system using selection method for disease resistant plant breeding programs using a herbicide bialaphos-resistant patII gene as a gene-based marker. Spraying bialaphos could eliminate the susceptible plants from the segregating populations such as ${F_2}^{\prime}s$ and thereafter. Tomato cv. Momotaro-yoke was transformed with patII gene 60 independent transformants were acquired. Total 42 transformants were analyzed in transgene copy numbers by Southern blotting and the segregation ratios for the bialaphos resistance. Statistical analysis revealed that the transgene copy numbers and the segregation ratios were not always coincided, especially having the tendency of underestimating the real numbers of the transgenes in the multicopy lines. A two-stepwise screening method was applied to select $T_1$ tomato plants which linked the transgenic patII to a disease resistance gene (I2 and Ve). Based on the resistant to susceptible ratios, T-20 plant was finally selected due to the estimated linkage 12-13 cM between the patII gene to the I2 gene on chromosome 11. This newly developed system could be applied to any economical crop in breeding programs.

Low HDL cholesterol is associated with increased atherogenic lipoproteins and insulin resistance in women classified with metabolic syndrome

  • Fernandez, Maria Luz;Jones, Jennifer J.;Ackerman, Daniela;Barona, Jacqueline;Calle, Mariana;Comperatore, Michael V.;Kim, Jung-Eun;Andersen, Catherine;Leite, Jose O.;Volek, Jeff S.;McIntosh, Mark;Kalynych, Colleen;Najm, Wadie;Lerman, Robert H.
    • Nutrition Research and Practice
    • /
    • v.4 no.6
    • /
    • pp.492-498
    • /
    • 2010
  • Both metabolic syndrome (MetS) and elevated LDL cholesterol (LDL-C) increase the risk for cardiovascular disease (CVD). We hypothesized that low HDL cholesterol (HDL-C) would further increase CVD risk in women having both conditions. To assess this, we recruited 89 women with MetS (25-72 y) and LDL-C ${\geq}$ 2.6 mmol/L. To determine whether plasma HDL-C concentrations were associated with dietary components, circulating atherogenic particles, and other risk factors for CVD, we divided the subjects into two groups: high HDL-C (H-HDL) (${\geq}$ 1.3 mmol/L, n=32) and low HDL-C (L-HDL) (< 1.3 mmol/L, n=57). Plasma lipids, insulin, adiponectin, apolipoproteins, oxidized LDL, Lipoprotein(a), and lipoprotein size and subfractions were measured, and 3-d dietary records were used to assess macronutrient intake. Women with L-HDL had higher sugar intake and glycemic load (P< 0.05), higher plasma insulin (P< 0.01), lower adiponectin (P< 0.05), and higher numbers of atherogenic lipoproteins such as large VLDL (P < 0.01) and small LDL (P<0.001) than the H-HDL group. Women with L-HDL also had larger VLDL and both smaller LDL and HDL particle diameters (P<0.001). HDL-C was positively correlated with LDL size (r=0.691, P<0.0001) and HDL size (r=0.606, P<0.001), and inversely correlated with VLDL size (r=-0.327, P<0.01). We concluded that L-HDL could be used as a marker for increased numbers of circulating atherogenic lipoproteins as well as increased insulin resistance in women who are already at risk for CVD.

The Relationship between Isoniazid Resistance and 463 CodonMutation of katG Gne in Mycobacterium Tuberculosis (결핵균 katG 유전자내 463 Codon 돌연변이와 Isoniazid내성 관계)

  • Park, Young-Kil;Shim, Myung-Sup;Cho, Sang-Hyun;Bai, Gill-Han;Kim, Sang-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.1
    • /
    • pp.8-13
    • /
    • 1996
  • Background: The 463 codon mutation of katG gene has been reported as an useful marker for the detection of isoniazid(INH) resistant strains of M. tuberculosis. This study aimed to elucidate relationship between 463 mutation in katG gene and INH resistance in M. tuberculosis. Method: DNA was extracted from 28 INH susceptible strains(MIC$\geq\;0.2{\mu}g/ml$ on the L$\ddot{o}$wenstein Jensen media) and used for amplification of 189bp fragment containing 463 codon by PCR. Amplified fragments were digested by restriction enzyme Msp I, analyzed by single strand conformation polymorphism(SSCP) in the MDE gel and sequenced to prove mutation. Result: Only 7(25%) out of 28 were digestible by restriction enzyme Msp I. The SSCP pattern of 21 strains were distinctly different from that of M. tuberculosis H37Rv. Msp I undigestible PCR fragment was substituted at 463 codon from Arg(CGG) to Leu(CTG). Conclusion: This finding clearly indicate no relationship between 463 codon mutation of the katG gene and INH resistance.

  • PDF

Characteristics of Agronomy Traits to Transgenic Rice Selected by Molecular Breeding Method (분자육종기법에 의해 선발된 형질전환 벼 계통의 작물학적 특성)

  • Lee, Hyun-Suk;Kang, Hyun-Goo;Park, Young-Hie;Jung, Hee-Young;Kim, Chang-Kil;Han, Jeung-Sul;Sohn, Jae-Keun;Kim, Kyung-Min;Park, Gyu-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.21 no.5
    • /
    • pp.388-394
    • /
    • 2008
  • This study was carried out to develop new cultivars using the $T_5$ generation of transformed rice by PCR analysis with DNA marker in each generation $(from\;T_3\;to\;T_5)$. In the previous study, we successfully developed the transgenic rice plants over-expressing the Arabidopsis $H^+/Ca^{2+}$ antiporter CAX 1 (accession no. U57411) gene. The calcium concentration in brown rice of transgenic plants was higher than that of donor plants, Iipum, and was selected 3 lines out of 25 lines at cultured GMO field. The major agronomic traits such as culm length, panicle length and panicle number of 3 lines at transgenic plants $(T_5)$ were similar to wild type. Also these lines appeared to have disease resistance to rice blast, cold resistance as compared with donor types. The grain shape was similar to donor plant, however, the 1000 grain weight of brown rice was different from transgenic plants. These finding would be used for basic data of new variety registration.

Development of Herbicide Resistant Plant Through Plant Tissue Culture (제초제(除草劑) Butachlor 및 Simetryne에 저항성(抵抗性)인 식물체(植物體) 선발육성(選拔育成))

  • Kim, K.U.;Kim, S.H.
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.200-207
    • /
    • 1987
  • This study was conducted to select and develop herbicide resistant plant through tissue culture. Growth response of seedlings and callis of various rice varieties with Echinochloa species was assessed under the treatment of various rates of butachlor [N-(butoxy methyl)-2-chloro-2', 6'-diethyl acetamide] and simetryne [2,4-bis(ethyl amino)-6-methyl thio-1,3,5-triazine]. Further, succinate dehydrogenase activity was determined in herbicide treated callus to characterize different response of plants to herbicide. Rice variety like Sangpung showed relative resistance in both callus and seedling states against butachlor, indicating maintenance of resistance. However, in the simetryne treatment, the similar response was not observed in callus and seedling state, although there was a great different response among plant materials against simetryne. Rice variety which exhibited resistance in callus and seedling states showed low succinate dehydrogenase inhibition index. Succinate dehydrogenase inhibition index can be used as an important marker characters to differentiate varietal response of plant to herbicide. Rice plant was differentiated from butachlor and simetryne tolerant callus treated at $2.5{\times}10^{-5}$ M is growing under the growth chamber and can be used for resistant source.

  • PDF

Effect of Cu-resistant Pseudomonas on growth and expression of stress-related genes of tomato plant under Cu stress (구리-오염 토양에서 토마토 식물의 생장과 스트레스-관련 유전자 발현에 미치는 구리-내성 Pseudomonas의 영향)

  • Kim, Min-Ju;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.257-264
    • /
    • 2017
  • Pseudomonas veronii MS1 and P. migulae MS2 have several mechanisms of copper resistance and plant growth promoting capability, and also can alleviate abiotic stress in plant by hydrolysis of a precursor of stress ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC deaminase. In 4-week pot test for tomato growth in soil contained 700 mg/kg Cu, inoculation of MS1 and MS2 significantly increased root and shoot lengths, wet weight and dry weight of tomato plants compared to those of uninoculated control. The inoculated tomato plants contained less amounts of proline that can protect plants from abiotic stress, and malondialdehyde, an oxidative stress marker than those of control. ACC synthase genes, ACS4 and ACS6, and ACC oxidase genes, ACO1 and ACO4, both involved in ethylene synthesis, were strongly expressed in Cu stressed tomato, whereas significantly reduced in tomato inoculated with MS1 and MS2. Also, a gene encoding a metal binding protein metallothionein, MT2 showed similar expression pattern with above genes. All these results indicated that these rhizobacteria could confer Cu resistance to tomato plant under Cu stress and allowed a lower level of Cu stress and growth promotion.