• Title/Summary/Keyword: Resistance marker

Search Result 351, Processing Time 0.032 seconds

Root proteome analysis of Chinese cabbage in response to Plasmodipohora brassicae Woron (배추 무사마귀병 마커 탐색을 위한 배추 뿌리 단백질체 분석)

  • Jeung, Jae Yun;Lim, Yong Pyo;Hwang, Cheol Ho
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.350-355
    • /
    • 2015
  • Clubroot disease is one of the most wide-spread and devastating diseases in the cultivation of Chinese cabbage. To develop a protein marker for resistance to clubroot disease in Chinese cabbage, a comparative proteome analysis was performed between a sensitive line, 94SK, and a resistant line, CR Shinki DH. Three proteins of two fold or higher accumulation that are specific to each line were found 3 days after innoculation of the Plasmodiphora brassicae. They are glutamine synthetase, malate dehydrogenase/oxidoreductase and fructose-bisphosphate aldolase in the 94SK and actin, phosphoglycerate kinase, and Cu/Zn superoxide dismutase in the CR Shinki line. From the comparison of the synthesized proteins in the 94SK and the CR Shinki, CR Shinki was found to produce more ATP-binding protein for the ABC transporter while 94SK showed a higher level of pathogenesis-related protein 1 production. All of these proteomic variations may lead to the development of molecular markers to accelerate the breeding process.

Isolation and Characterization of Aniline-Degrading Bacteria

  • Kahng, Hyung-Yeel;Kim, Seung-Il;Woo, Mi-Jeong;Park, Yong-Keun;Lee, Yung-Nok
    • Korean Journal of Microbiology
    • /
    • v.30 no.3
    • /
    • pp.199-206
    • /
    • 1992
  • Six isolated strains degrading aniline were selected, identified and designated as pseudomonas putida K6, Pseudomonas acidovorans K82, Achromobacter gr. D. V. K24, Achromobacter xylosocidans K4, Moraxella sp. K21 and Moraxella sp. K22. All of them degraded 1000 ppm aniline completely within 30 to 36 hours. Most of these strains are resistant to antibiotics more than one, but Moraxella sp. has not any antibiotic marker tested. Most strains except for P. acidovorans K82 were shown to have resistance to the heavy metal ions such as Ni, Cu, Li, Ba, Co, etc. but not to Hg to which only P. putida K6 was resistant. M. sp. K21 was capable of degrading aniline to a maximum concentration of 2500 ppm without any repression. The incubation of the cell in limited pH ranges (4-8) had no great effect on aniline degradation. The addition of bactopeptone to the minimal media promoted the speed of aniline degradation, but the addition of glucose rather repressed the rate of aniline degradation. Through enzyme assay, A. gr. D. V. K 24 was shown to degrade aniline through artho-pathway and formed .betha.-ketoadipate as intermediate metabolite.

  • PDF

Molecular Control of Gene Co-suppression in Transgenic Soybean via Particle Bombardment

  • El-Shemy, Hany A.;Khalafalla, Mutasim M.;Fujita, Kounosuke;Ishimoto, Masao
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.61-67
    • /
    • 2006
  • Molecular co-suppression phenomena are important to consider in transgene experiments. Embryogenic cells were obtained from immature cotyledons and engineered with two different gene constructs (pHV and pHVS) through particle bombardment. Both constructs contain a gene conferring resistance to hygromycin (hpt) as a selective marker and a modified glycinin (11S globulin) gene (V3-1) as a target. sGFP(S65T) as a reporter gene was, however, inserted into the flanking region of the V3-1 gene (pHVS). Fluorescence microscopic screening after the selection of hygromycin, identified clearly the expression of sGFP(S65T) in the transformed soybean embryos bombarded with the pHVS construct. Stable integration of the transgenes was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Seeds of transgenic plants obtained from the pHV construct frequently lacked an accumulation of endogenous glycinin, which is encoded by homologous genes to the target gene V3-1. Most of the transgenic plants expressing sGFP(S65T) showed highly accumulation of glycinin. The expression of sGFP(S65T) and V3-1 inherits into the next generations. sGFP(S65T) as a reporter gene may be useful to increase the transformation efficiency of transgenic soybean with avoiding gene co-suppression.

Agrobacterium tumefaciens Mediated Genetic Transformation of Pigeonpea [Cajanus cajan (L.) Millsp.]

  • Kumar, S.Manoj;Syamala, D.;Sharma, Kiran K.;Devi, Prathibha
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • Optimal protocol for efficient genetic transformation has been defined to aid future strategies of genetic engineering in pigeon pea with agronomically important genes. Transgenic pigeonpea plants were successfully produced through Agrobacterium tumefaciens-mediated genetic transformation method using cotyledonary node explants by employing defined culture media. The explants were co-cultivated with A. tumefaciens strain C-58 harboring the binary plasmid, pCAMBIA-1301 [con-ferring $\beta$-glucuronidase(GUS) activity and resistance to hygromycin] and cultured on selection medium (regeneration medium supplemented with hygromycin) to select putatively transformed shoots. The shoots were then rooted on root induction medium and transferred to pots containing sand and soil mixture in the ratio of 1:1. About 22 putative TO transgenic plants have been produced. Stable expression and integration of the transgenes in the putative transgenics were confirmed by GUS assay, PCR and Southern blot hybridization with a transformation efficiency of over 45%. Stable integration and expression of the marker gene has been confirmed in the TO and T1 transgenics through PCR, and Southern hybridization.

Development of PCR-based markers for discriminating Solanum berthaultii using its complete chloroplast genome sequence

  • Kim, Soojung;Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.207-216
    • /
    • 2018
  • Solanum berthaultii is one of the wild diploid Solanum species, which is an excellent resource in potato breeding owing to its resistance to several important pathogens. On the other hand, sexual hybridization between S. berthaultii and S. tuberosum (potato) is limited because of their sexual incompatibility. Therefore, cell fusion can be used to introgress various novel traits from this wild species into the cultivated potatoes. After cell fusion, it is crucial to identify fusion products with the aid of molecular markers. In this study, the chloroplast genome sequence of S. berthaultii obtained by next-generation sequencing technology was described and compared with those of five other Solanum species to develop S. berthaultii specific markers. A total sequence length of the chloroplast genome is 155,533 bp. The structural organization of the chloroplast genome is similar to those of the five other Solanum species. Phylogenic analysis with 25 other Solanaceae species revealed that S. berthaultii is most closely located with S. tuberosum. Additional comparison of the chloroplast genome sequence with those of the five Solanum species revealed 25 SNPs specific to S. berthaultii. Based on these SNPs, six PCR-based markers for differentiating S. berthaultii from other Solanum species were developed. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. berthaultii.

Improved plastid transformation efficiency in Scoparia dulcis L.

  • Kota, Srinivas;Hao, Qiang;Narra, Muralikrishna;Anumula, Vaishnavi;Rao, A.V;Hu, Zanmin;Abbagani, Sadanandam
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The high expression level of industrial and metabolically important proteins in plants can be achieved by plastid transformation. The CaIA vector, a Capsicum-specific vector harboring aadA (spectinomycin resistance), is a selectable marker controlled by the PsbA promoter, and the terminator is flanked by the trnA and trnI regions of the inverted repeat (IR) region of the plastid. The CaIA vector can introduce foreign genes into the IR region of the plastid genome. The biolistic method was used for chloroplast transformation in Scoparia dulcis with leaf explants followed by antibiotic selection on regeneration medium. Transplastomes were successfully screened, and the transformation efficiency of 3 transgenic lines from 25 bombarded leaf explants was determined. Transplastomic lines were evaluated by PCR and Southern blotting for the confirmation of aadA insertion and its integration into the chloroplast genome. Seeds collected from transplastomes were analyzed on spectinomycin medium with wild types to determine genetic stability. The increased chloroplast transformation efficiency (3 transplastomic lines from 25 bombarded explants) would be useful for expressing therapeutically and industrially important genes in Scoparia dulcis L.

Proteomic Analysis of Serum of Women with Elevated Ca-125 to Differentiate Malignant from Benign Ovarian Tumors

  • Li, Li;Xu, Yi;Yu, Chun-Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3265-3270
    • /
    • 2012
  • Clinically, elevated cancer antigen 125 (CA-125) in blood predicts tumor burden in a woman's body, especially in the ovary, but cannot differentiate between malignant or benign. We here used intensive modern proteomic approaches to identify predictive proteins in the serum of women with elevated CA-125 to differentiate malignant from benign ovarian tumors. We identified differentially expressed proteins in serum samples of ovarian cancer (OC) patients, benign ovarian tumor (BT) patients, and healthy control women using mass spectrometry-based quantitative proteomics. Both the OC and BT patients had elevated CA-125. Quantitation was achieved using isobaric tags for relative and absolute quantitation. We obtained 124 quantified differential serum proteins in OC compared with BT. Two proteins, apolipoprotein A-4 (APOA4) and natural resistance-associated macrophage 1, were verified using Western blotting. Proteome profiling applied to OC cases identified several differential serum proteins in the serum of women with elevated CA-125. A novel protein, APOA4, has the potential to be a marker for malignant tumor differentiation in the serum of women with elevated CA-125.

Morinda citrifolia (Noni) Alters Oxidative Stress Marker and Antioxidant Activity in Cervical Cancer Cell Lines

  • Gupta, Rakesh Kumar;Singh, Neeta
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4603-4606
    • /
    • 2013
  • Background: Cervical cancer, the second most common cancer in women, has a high mortality rate. Cisplatin, an antitumor agent, is generally used for its treatment. However, the administration of cisplatin is associated with side effects and intrinsic resistance. Morinda citrifolia (Noni), a natural plant product, has been shown to have antioxidant activities in vitro and in vivo. Materials and Methods: Both HeLa and SiHa cervical cancer cell lines were treated with 10% Noni, 10 mg/dl cisplatin, or a combination of both 10% Noni and 10 mg/dl cisplatin for 24 hours. Post culturing, the cells were pelleted and stored at $-70^{\circ}C$ for malondialdehyde and catalase assays. Results: On treatment with Noni, CP, and their combination, the level of MDA decreased by 0.76 fold, 0.49 fold, and 0.68 fold respectively in HeLa cells; and by 0.93 fold, 0.67 fold, and 0.79 fold respectively in SiHa cells, as compared to their controls; whereas catalase activity increased by 1.61 fold, 0.54 fold, and 2.35 fold, respectively in HeLa cells; and by 0.98 fold, 0.39 fold, and 1.85 fold respectively in SiHa cells. Conclusions: A decrease in level of lipid peroxidation and an increase in catalase activity were observed with Noni by itself and the effect ameliorated changes observed with cisplatin when given in combination.

Expression of Schwanniomyces occidentalis $\alpha-Amylase$ Gene in Saccharomyces cerevisiae var. diastaticus

  • Park, Jeong-Nam;Shin, Dong-Jun;Kim, Hee-Ok;Kim, Dong-Ho;Lee, Hwang-Hee;Chun, Soon-Bai;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.668-671
    • /
    • 1999
  • The gene encoding Schwanniomyces occidentalis $\alpha-amylase$(AMY) was introduced into Saccharomyces cerevisiae var. diastaticus which secreted only glucoamylase, by using a linearized yeast integrating vector to develop stable strains with a capability of secreting $\alpha-amylase$and glucoamylase simultaneously. A dominant selectable marker, the geneticin(G418) resistance gene (Gt^r$), was cloned into a vector to screen wild-type diploid transformants harboring the AMY gene. The amylolytic activities of transformants were about 3-7 times higher than those of the recipient strains. When grown in nonselective media, the transformants with the linearized integrating vector containing the AMY gene exhibited almost all of the mitotic stability after 100 generations.

  • PDF

Structural Analysis of Plasmid pCL2.1 from Lactococcus lactis ssp. lactis $ML_8$ and the Construction of a New Shuttle Vector for Lactic Acid Bacteria

  • Jeong, Do-Won;Cho, San-Ho;Lee, Jong-Hoon;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.396-401
    • /
    • 2009
  • The nucleotide sequence contains 2 open reading frames encoding a 45-amino-acid protein homologous to a transcriptional repressor protein CopG, and a 203-amino-acid protein homologous to a replication protein RepB. Putative countertranscribed RNA, a double-strand origin, and a single-strand origin were also identified. A shuttle vector, pUCL2.1, for various lactic acid bacteria (LAB) was constructed on the basis of the pCL2.1 replicon, into which an erythromycin-resistance gene as a marker and Escherichia coli ColE1 replication origin were inserted. pUCL2.1 was introduced into E. coli, Lc. lactis, Lactobacillus (Lb.) plantarum, Lb. paraplantarum, and Leuconostoc mesenteroides. The recombinant LAB maintained traits of transformed plasmid in the absence of selection pressure over 40 generations. Therefore, pUCL2.1 could be used as an E. coli/LAB shuttle vector, which is an essential to engineer recombinant LAB strains that are useful for food fermentations.