• Title/Summary/Keyword: Resistance genes

Search Result 1,246, Processing Time 0.023 seconds

Aminoglycoside susceptibility and genetic characterization of Salmonella enterica subsp. enterica isolated from pet turtles

  • Hossain, Sabrina;De Silva, B.C.J.;Wimalasena, S.H.M.P.;Pathirana, H.N.K.S.;Heo, Gang-Joon
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • Salmonella enterica subsp. enterica is a common microbial flora in pet turtles, which could opportunistically become pathogenic to human. Their possession of aminoglycoside resistance genes has important significance both in humans and animal medicine. In this study, twenty-one Salmonella enterica subsp. enterica were isolated from thirty-five individual turtles purchased from pet shops and online markets in Korea. In order to characterize the aminoglycoside susceptibility patterns, antimicrobial susceptibility tests were performed against gentamicin, amikacin and kanamycin of aminoglycoside antimicrobial group. Each of the isolates showed susceptibility to all tested aminoglycosides in disk diffusion and minimum inhibitory concentration (MIC) tests. PCR assay was carried out to determine aminoglycoside resistance genes, integron and integron mediated aminoglycoside genes. None of the isolates showed aac(3)-IIa, aac-(6')-Ib, armA, aphAI-IAB aminoglycoside resistance genes. Only, five isolates (24%) harbored class 1 integron related IntI1 integrase gene. The results suggest that Salmonella enterica subsp. enterica strains isolated from pet turtles are less resistance to aminoglycosides and don't harbor any aminoglycosides resistance genes.

Functional Metagenome Mining of Soil for a Novel Gentamicin Resistance Gene

  • Im, Hyunjoo;Kim, Kyung Mo;Lee, Sang-Heon;Ryu, Choong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.521-529
    • /
    • 2016
  • Extensive use of antibiotics over recent decades has led to bacterial resistance against antibiotics, including gentamicin, one of the most effective aminoglycosides. The emergence of resistance is problematic for hospitals, since gentamicin is an important broad-spectrum antibiotic for the control of bacterial pathogens in the clinic. Previous study to identify gentamicin resistance genes from environmental samples have been conducted using culture-dependent screening methods. To overcome these limitations, we employed a metagenome-based culture-independent protocol to identify gentamicin resistance genes. Through functional screening of metagenome libraries derived from soil samples, a fosmid clone was selected as it conferred strong gentamicin resistance. To identify a specific functioning gene conferring gentamicin resistance from a selected fosmid clone (35-40 kb), a shot-gun library was constructed and four shot-gun clones (2-3 kb) were selected. Further characterization of these clones revealed that they contained sequences similar to that of the RNA ligase, T4 rnlA that is known as a toxin gene. The overexpression of the rnlA-like gene in Escherichia coli increased gentamicin resistance, indicating that this toxin gene modulates this trait. The results of our metagenome library analysis suggest that the rnlA-like gene may represent a new class of gentamicin resistance genes in pathogenic bacteria. In addition, we demonstrate that the soil metagenome can provide an important resource for the identification of antibiotic resistance genes, which are valuable molecular targets in efforts to overcome antibiotic resistance.

Analysis of Gene-specific Molecular Markers for Biotic and Abiotic Stress Resistance in Tropically adapted Japonica Rice Varieties

  • Jung-Pil Suh;Sung-Ryul Kim;Sherry Lou Hechanova;Marianne Hagan;Graciana Clave;Myrish Pacleb
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.292-292
    • /
    • 2022
  • Since 1992, the Rural Development Administration (RDA), Republic of Korea in collaboration with International Rice Research Institute (IRRI) has developed 6 japonica rice varieties(MS11, Japonica 1, 2, 6, 7 and Cordillera 4) that are adaptable to tropical regions. However, these varieties show moderate resistance or susceptibility to certain biotic and abiotic stress. The development of varieties with more stable forms of resistance is highly desirable, and this could be possibly achieved through rapid introgression of known biotic and abiotic resistant genes. In this study, we analyzed the allele types of major biotic stress resistant genes including Xa5, Xa13, Xa21 and Xa25 for bacterial leaf blight, Pi5, Pi40, Pish and Pita2 for blast, tsv1 for rice tungro spherical virus, and Bph6, Bph9, Bph17, Bph18 and Bph32 for brown planthopper by using gene-specific molecular markers. In addition, seed quality related genes Sdr4 for preharvest sprouting and qLG-9 for seed longevity were also analyzed. The results revealed that2h5 and Xa25 resistance alleles showed in all varieties while Pi5 resistance allele showed only in MS11. The Pish resistance allele were present in five varieties except for Japonica 1. Meanwhile, for the rest of the genes, no presence of resistance alleles found in six varieties. In conclusions, most of tropical japonica varieties are lack of the major biotic stress resistant genes and seed quality genes (Sdr4 and qLG-9). Moreover, the results indicated that rapid deployment of a few major genes in the current tropical japonica rice varieties is urgent to increase durability and spectrum of biotic stress resistance and also seed dormancy/longevity which are essential traits for tropical environments.

  • PDF

Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato

  • Kim, Young-Jin;Gregory B. Martin
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • An important recent advance in the field of plant-microbe interactions has been the cloning of genes that confer resistance to specific viruses, bacteria, fungi or insects. Disease resistance (R) genes encode proteins with predicted structural motifs consistent with them having roles in signal recognition and transduction. Plant disease resistance is the result of an innate host defense mechanism, which relies on the ability of plant to recognize pathogen invasion and efficiently mount defense responses. In tomato, resistance to the pathogen Pseudomonas syringae pv. tomato is mediated by the specific recognition between the tomato serine/threonine kinase Pto and bacterial protein AvrPto or AvrPtoB. This recognition event initiates signaling events that lead to defense responses including an oxidative burst, the hypersensitive response (HR), and expression of pathogenesis- related genes.

Detection of Antibiotic Resistance and Resistance Genes in Enterococci Isolated from Sucuk, a Traditional Turkish Dry-Fermented Sausage

  • Demirgul, Furkan;Tuncer, Yasin
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.670-681
    • /
    • 2017
  • The aim of this study was to isolate enterococci in Sucuk, a traditional Turkish dry-fermented sausage and to analyze isolates for their biodiversity, antibiotic resistance patterns and the presence of some antibiotic resistance genes. A total of 60 enterococci strains were isolated from 20 sucuk samples manufactured without using a starter culture and they were identified as E. faecium (73.3%), E. faecalis (11.7%), E. hirae (8.3%), E. durans (3.3%), E. mundtii (1.7%) and E. thailandicus (1.7%). Most of the strains were found resistant to rifampin (51.67%) followed by ciprofloxacin (38.33%), nitrofurantoin (33.33%) and erythromycin (21.67%). All strains were found susceptible to ampicillin. Only E. faecium FYE4 and FYE60 strains displayed susceptibility to all antibiotics. Other strains showed different resistance patterns to antibiotics. E. faecalis was found more resistant to antibiotics than other species. Most of the strains (61.7%) displayed resistance from between two and eight antibiotics. The ermB, ermC, gyrA, tetM, tetL and vanA genes were detected in some strains. A lack of correlation between genotypic and phenotypic analysis for some strains was detected. The results of this study indicated that Sucuk manufactured without using a starter culture is a reservoir of multiple antibiotic resistant enterococci. Consequently, Sucuk is a potential reservoir for the transmission of antibiotic resistance genes from animals to humans.

Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells

  • Yang, Seoyeon;Lee, Ji-Yeon;Hur, Ho;Oh, Ji Hoon;Kim, Myoung Hee
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.450-455
    • /
    • 2018
  • Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

Virulence gene profiles and antimicrobial susceptibility of Salmonella Brancaster from chicken

  • Evie Khoo ;Roseliza Roslee ;Zunita Zakaria;Nur Indah Ahmad
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.82.1-82.12
    • /
    • 2023
  • Background: The current conventional serotyping based on antigen-antisera agglutination could not provide a better understanding of the potential pathogenicity of Salmonella enterica subsp. enterica serovar Brancaster. Surveillance data from Malaysian poultry farms indicated an increase in its presence over the years. Objective: This study aims to investigate the virulence determinants and antimicrobial resistance in S. Brancaster isolated from chickens in Malaysia. Methods: One hundred strains of archived S. Brancaster isolated from chicken cloacal swabs and raw chicken meat from 2017 to 2022 were studied. Two sets of multiplex polymerase chain reaction (PCR) were conducted to identify eight virulence genes associated with pathogenicity in Salmonella (invasion protein gene [invA], Salmonella invasion protein gene [sipB], Salmonella-induced filament gene [sifA], cytolethal-distending toxin B gene [cdtB], Salmonella iron transporter gene [sitC], Salmonella pathogenicity islands gene [spiA], Salmonella plasmid virulence gene [spvB], and inositol phosphate phosphatase gene [sopB]). Antimicrobial susceptibility assessment was conducted by disc diffusion method on nine selected antibiotics for the S. Brancaster isolates. S. Brancaster, with the phenotypic ACSSuT-resistance pattern (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline), was subjected to PCR to detect the corresponding resistance gene(s). Results: Virulence genes detected in S. Brancaster in this study were invA, sitC, spiA, sipB, sopB, sifA, cdtB, and spvB. A total of 36 antibiogram patterns of S. Brancaster with a high level of multidrug resistance were observed, with ampicillin exhibiting the highest resistance. Over a third of the isolates displayed ACSSuT-resistance, and seven resistance genes (β-lactamase temoneira [blaTEM], florfenicol/chloramphenicol resistance gene [floR], streptomycin resistance gene [strA], aminoglycoside nucleotidyltransferase gene [ant(3")-Ia], sulfonamides resistance gene [sul-1, sul-2], and tetracycline resistance gene [tetA]) were detected. Conclusion: Multidrug-resistant S. Brancaster from chickens harbored an array of virulence-associated genes similar to other clinically significant and invasive non-typhoidal Salmonella serovars, placing it as another significant foodborne zoonosis.

Characterization of Extended Spectrum Beta-Lactamases (ESBL) Producing Escherichia coli Isolates from Surface Water Adjacent to Pharmaceutical Industries in Bangladesh: Antimicrobial Resistance and Virulence Pattern

  • Taslin Jahan Mou;Nasrin Akter Nupur;Farhana Haque;Md Fokhrul Islam;Md. Shahedur Rahman;Md. Amdadul Huq;Anowar Khasru Parvez
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.268-279
    • /
    • 2023
  • The pharmaceutical industry in Bangladesh produces a diverse range of antibiotics for human and animal use, however, waste disposal management is inadequate. This results in substantial quantities of antibiotics being discharged into water bodies, which provide suitable environment for the growth of antibiotic-resistant bacteria, capable of spreading resistance genes. This study intended for exploring the bacterial antibiotic resistance profile in adjoining aquatic environmental sources of pharmaceutical manufacturing facilities in Bangladesh. Seven surface water samples were collected from the vicinity of two pharmaceutical industries located in the Savar area and 51 Escherichia coli isolates were identified using both phenotypic and genotypic methods. Antibiotic susceptibility tests revealed the highest percentage of resistance against ampicillin, azithromycin, and nalidixic acid (100%) and the lowest resistance against meropenem (1.96%) out of sixteen different antibiotics tested. 100% of the study E. coli isolates were observed with Multidrug resistance phenotypes, with the Multiple Antibiotic Resistance (MAR) value ranging from 0.6-1.0. Furthermore, 69% of the isolates were Extended Spectrum Beta-Lactamases (ESBL) positive as per the Double Disk Diffusion Synergy Test (DDST). ESBL resistance genes blaTEM, blaCTX-M-13, blaCTX-M-15, and blaSHV were detected in 70.6% (n = 36), 60.8% (n = 32), 54.9% (n = 28), and 1.96% (n = 1) of the isolates, respectively, by Polymerase Chain Reaction (PCR). Additionally, 15.68% (n = 8) of the isolates were positive for E. coli specific virulence genes in PCR. These findings suggest that pharmaceutical wastewater, if not properly treated, could be a formidable source of antibiotic resistance spread in the surrounding aquatic environment. Therefore, continued surveillance for drug resistance among bacterial populations around drug manufacturing facilities in Bangladesh is necessary, along with proper waste disposal management.

Co-occurrence Analyses of Antibiotic Resistance Genes and Microbial Community in Human and Livestock Animal Feces (사람 및 가축 유래 분변 미생물 군집과 항생제 내성 유전자 간 상관 관계에 대한 연구)

  • Jiwon Jeong;Aprajita Bhandari;Tatsuya Unno
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.335-343
    • /
    • 2022
  • BACKGROUND: Antibiotics used in animal husbandry for disease prevention and treatment have resulted in the rapid progression of antibiotic resistant bacteria which can be introduced into the environment through livestock feces/manure, disseminating antibiotic resistant genes (ARGs). In this study, fecal samples were collected from the livestock farms located in Jeju Island to investigate the relationship between microbial communities and ARGs. METHODS AND RESULTS: Illumina MiSeq sequencing was applied to characterize microbial communities within each fecal sample. Using quantitative PCR (qPCR), ten ARGs encoding tetracycline resistance (tetB, tetM), sulfonamide resistance (sul1, sul2), fluoroquinolone resistance (qnrD, qnrS), fluoroquinolone and aminoglycoside resistance (aac(6')-Ib), beta-lactam resistance (blaTEM, blaCTX-M), macrolide resistance (ermC), a class 1 integronsintegrase gene (intI1), and a class 2 integrons-integrase gene (intI2) were quantified. The results showed that Firmicutes and Bacteroidetes were dominant in human, cow, horse, and pig groups, while Firmicutes and Actinobacteria were dominant in chicken group. Among ARGs, tetM was detected with the highest number of copies, followed by sul1 and sul2. Most of the genera belonging to Firmicutes showed positive correlations with ARGs and integron genes. There were 97, 34, 31, 25, and 22 genera in chicken, cow, pig, human, and horse respectively which showed positive correlations with ARGs and integron genes. In network analysis, we identified diversity of microbial communities which correlated with ARGs and integron genes. CONCLUSION(S): In this study, antibiotic resistance patterns in human and livestock fecal samples were identified. The abundance of ARGs and integron genes detected in the samples were associated with the amount of antibiotics commonly used for human and livestocks. We found diverse microbial communities associated with antibiotics resistance genes in different hosts, suggesting that antibiotics resistance can disseminate across environments through various routes. Identifying the routes of ARG dissemination in the environment would be the first step to overcome the challenge of antibiotic resistance in the future.

Detection of Inducible Clindamycin Resistance Genes (ermA, ermB, and ermC) in Staphylococcus aureus and Staphylococcus epidermidis

  • Mazloumi, Mohammad Javad;Akbari, Reza;Yousefi, Saber
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.449-457
    • /
    • 2021
  • The aim of the present study was to survey the frequency of inducible and constitutive phenotypes and inducible cross-resistant genes by regulating the methylation of 23S rRNA (ermA, ermB, and ermC) and macrolide efflux-related msrA gene in Staphylococcus aureus and S. epidermidis strains. A total of 172 bacterial isolates (identified based on standard tests), were examined in this study. Antibiotic susceptibility was determined by the disk diffusion method, and all isolates were evaluated with respect to inducible and constitutive phenotypes. The presence of ermA, ermB, ermC, and msrA genes was investigated by a PCR assay. The constitutive resistance phenotypes showed a higher distribution among the isolates. R phenotype was detected more among S. epidermidis isolates (46.25%). ermB, ermC, and msrA genes were detected more in methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) isolates that had R and HD phenotypes (>77% strains). The ermA gene had the lowest frequency among MRSA, MRSE, MSSA, and MSSE strains (<14% isolates). Distribution of inducible resistance genes in MRSA and MRSE strains, and possibly other species, leads to increased constitutive resistance to erythromycin, clindamycin, and other similar antibiotics. Therefore, it can be challenging to treat infections caused by these resistant strains.