• Title/Summary/Keyword: Resistance against sulfate attack

Search Result 15, Processing Time 0.021 seconds

Erosion Resistance Evaluation of High-Strength SCC (고강도 고유동 콘크리트의 침식 저항성)

  • Choi, Sok-Hwan;Lee, Jae-Moon;Han, Man-Yop;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.205-208
    • /
    • 2006
  • Damage of hydraulic concrete structures by the abrasion and erosion process is very severe and it indicates that the necessity of considering the influence of this process while designing concrete mixtures. Abrasion wear of concrete in hydraulic structures is caused by the movement of particles, water-borne debris. The resistance against erosion for high-strength self-consolidating concrete(SCC) was examined in this paper. A newly designed testing method is presented in order to quantitatively estimate the erosion of concrete. It was shown that loss of volume in abraded concrete can be explained as function of material parameters such as the amount of fly ash and blast furnace slag. Those admixtures have been widely used to reduce heat of hydration and improve resistance against sulfate attack. The results of current study can be used as a guideline in selecting the composition of concrete exposed to abrasion-wear.

  • PDF

A Study on the Chemical Resistance of Concrete Substituting Fly ash (플라이애쉬를 혼합(混合)한 콘크리트의 내약품성(耐藥品性)에 관한 연구(硏究))

  • Moon, Han Young;Seo, Joung Woo;Son, Hyung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.103-112
    • /
    • 1988
  • The reasons why the hardened cement paste substituted the domestic fly ash are better in resisting against sulfate or calcium chloride attack the one used portland cement are as follows. First, because the fly ash could restrict the gypsum creation in resisting against sulfate attack, the $C_3A$ hydrates were not inversed to ettringite. Second, in the case of the, hardened cement paste immersed in calcium chloride solution, the fly ash was effective in resisting the deteorioration resulting from microcrack in surface and inner composition by the ionization of calcium chloride solution.

  • PDF

Effect of Fineness Levels of GGBFS on the Strength and Durability of Concrete (콘크리트의 강도 및 내구성에 대한 고로슬래그미분말 분말도의 영향)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1095-1104
    • /
    • 2014
  • This paper presents the results of experimental work on both strength characteristics and durability of concrete or mortar having 50% ground granulate blastfurnace slag(GBS) with different fineness levels (4,450, 6,000 and $8,000cm^2/g$). Compressive and split tensile strength test results indicated that the concrete with a higher fineness level of GBS exhibited a better strength development due to the acceleration of latent hydraulic property at the later curing stage compared with ordinary portland cement concrete. Meanwhile, it was found that a higher fineness level of GBS showed some negative effects on the resistance against freezing-thawing action. However, incorporation of GBS to concrete, irrespective of fineness levels, significantly enhanced the chloride ions penetration resistance. The resistance against sulfate attack of mortar with GBS was greatly dependent on the attacking sources from sulfate environments.

Efficacy of Wood Preservatives Formulated with Okara and Its Microscopic Analysis (두부비지 방부제의 방부효능 및 현미경적 분석)

  • Kim, Ho-Yong;Choi, In-Gyu;Ahn, Sye Hee;Oh, Sei Chang;Youn, Young Ho;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.245-254
    • /
    • 2009
  • As a substitute for CCA, which is inhibited due to its environmental pollution and human harmfulness, and CuAz and ACQ with a high cost, okara-based wood preservatives were formulated with okara hydrolyzates using copper sulfate and/or borax as a metal salt. The efficacy of the preservatives and X-ray microanalysis of wood specimens treated with the preservatives were examined to confirm the potential of the okara-based wood preservatives. Most of the preservatives showed excellent decay resistance against brown-rot fungi, Postia placenta and Gloeophyllum trabeum. The efficacy was improved when the acid concentration and temperature used for the hydrolysis of okara increased. In addition, when borax was added into copper sulfate/okara hydrolyzates preservative formulations, any decay was not found in the specimens. From the microscopic observation of the specimens treated with okara-based wood preservatives, it seems that okara is contributed to the fixing of metal salts in wood blocks. Therefore, it is speculated that okara-based wood preservatives can effectively protect wood against fungal attack as CuAz, and that the preservatives are sufficient to use as an alternative wood preservative of CCA, ACQ and CuAz.

Durability Properties and Microstructure of Ground Granulated Blast Furnace Slag Cement Concrete

  • Divsholi, Bahador Sabet;Lim, Tze Yang Darren;Teng, Susanto
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • Ground granulated blast-furnace slag (GGBS) is a green construction material used to produce durable concrete. The secondary pozzolanic reactions can result in reduced pore connectivity; therefore, replacing partial amount of Portland cement (PC) with GGBS can significantly reduce the risk of sulfate attack, alkali-silica reactions and chloride penetration. However, it may also reduce the concrete resistance against carbonation. Due to the time consuming process of concrete carbonation, many researchers have used accelerated carbonation test to shorten the experimental time. However, there are always some uncertainties in the accelerated carbonation test results. Most importantly, the moisture content and moisture profile of the concrete before the carbonation test can significantly affect the test results. In this work, more than 200 samples with various water-cementitious material ratios and various replacement percentages of GGBS were cast. The compressive strength, electrical resistivity, chloride permeability and carbonation tests were conducted. The moisture loss and microstructure of concrete were studied. The partial replacement of PC with GGBS produced considerable improvement on various properties of concrete.