• 제목/요약/키워드: Resistance Gene

검색결과 1,720건 처리시간 0.029초

N4에 대해 내성을 나타내는데 필요한 rtn 유전자의 부위 (The DNA region of rtn gene essential for resistance against N4 infection)

  • 이동환;유선미;황의욱;이영훈;채건상
    • 미생물학회지
    • /
    • 제29권5호
    • /
    • pp.290-295
    • /
    • 1991
  • N4 phage, which infects E. coli K-12 strains, could not infect E. coli K-12 strains containing rtn(resistant to N4) gene on plasmids, which was isolated from Proteus vulgaris ATCC 13315. The region of rtn gene for Rtn phenotype was reduced to the 1.7 kb HincII-AccI fragment, and rtn gene seemed to have its own promoter. This putative promoter was present in 107 bp HindII-DraI fragment, and known to be functional in E. cole K-12, which is supported by the fact that phenotype of a subclone, pRMG103A1B which does not contain the 107 bp fragment, was dependent on the existance of a functional promoter in the upstream of rtn gene, and that the 107 bp fragment had promoter activity when located in the upstream of structural gene of galactodinase of E. coli. The promoter-bearing fragment contains two overlapping putative promoter sequences, both of which show a fit in eight of twelve nucleotides with consensus sequences of E. coli promoters at the -35 and -10 regions.

  • PDF

Isolation and Characterization of Kasugamycin Biosynthetic Genes from Streptomyces kasugaensis KACC 20262

  • JO YOU-YOUNG;LIU JING;JIN YING-YU;YANG YOUNG-YELL;SUH JOO-WON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.491-496
    • /
    • 2005
  • The biosynthetic gene cluster for the aminoglycoside antibiotic kasugamycin was isolated and characterized from the kasugamycin producing strain, Streptomyces kasugaensis KACC 20262. By screening a fosmid library using kasA, the gene encoding aminotransferase, we isolated a 22 kb DNA fragment. The fragment contained seventeen complete open reading frames (ORFs); one of these ORFs, kasD, was identified as the gene for dNDP-glucose 4,6-dehydratase, which catalyzes the conversion of dNDP-glucose to 4-keto-6-deoxy-dNDP-glucose. The enzyme showed a broad spectrum of substrate specificity. In addition, ksR was overexpressed in E. coli BL21 and proved to be a self-resistance gene against kasugamycin. These findings suggest that the isolated gene cluster is highly likely responsible for the biosynthesis of kasugamycin.

Virulence factors, antimicrobial resistance patterns, and genetic characteristics of hydrogen sulfide-producing Escherichia coli isolated from swine

  • Park, Hyun-Eui;Shin, Min-Kyoung;Park, Hong-Tae;Shin, Seung Won;Jung, Myunghwan;Im, Young Bin;Yoo, Han Sang
    • 대한수의학회지
    • /
    • 제55권3호
    • /
    • pp.191-197
    • /
    • 2015
  • Escherichia (E.) coli is commensal bacteria found in the intestine; however, some pathogenic strains cause diseases in animals and humans. Although E. coli does not typically produce hydrogen sulfide ($H_2S$), $H_2S$-producing strains of E. coli have been identified worldwide. The relationship between virulence and $H_2S$ production has not yet been determined. Therefore, characteristics of $H_2S$-producing isolates obtained from swine feces were evaluated including antibiotic resistance patterns, virulence gene expression, and genetic relatedness. Rates of antibiotic resistance of the $H_2S$-producing E. coli varied according to antibiotic. Only the EAST1 gene was detected as a virulence gene in five $H_2S$-producing E. coli strains. Genes conferring $H_2S$ production were not transmissible although the sseA gene encoding 3-mercaptopyruvate sulfurtransferase was detected in all $H_2S$-producing E. coli strains. Sequences of the sseA gene motif CGSVTA around Cys238 were also identical in all $H_2S$- producing E. coli strains. Diverse genetic relatedness among the isolates was observed by pulsed-field gel electrophoresis analysis. These results suggested that $H_2S$-producing E. coli strains were not derived from a specific clone and $H_2S$ production in E. coli is not associated with virulence genes.

Galactinol is Involved in Induced Systemic Resistance against Bacterial Infection and Environmental Stresses

  • Cho, Song-Mi;Kim, Su-Hyun;Kim, Young-Cheol;Yang, Kwang-Yeol;Kim, Kwang-Sang;Choi, Yong-Soo;Cho, Baik-Ho
    • 한국자원식물학회지
    • /
    • 제23권3호
    • /
    • pp.248-255
    • /
    • 2010
  • We previously demonstrated that root colonization of the rhizobacterium, Pseudomonas chlororaphis O6, induced expression of a galactinol synthase gene (CsGolS1), and resulting galactinol conferred induced systemic resistance (ISR) against fungal and bacterial pathogens in cucumber leaves. To examine the role of galactinol on ISR, drought or high salt stress, we obtained T-DNA insertion Arabidopsis mutants at the AtGolS1 gene, an ortholog of the CsGolS1 gene. The T-DNA insertion mutant compromised resistance induced by the O6 colonization against Erwinia carotovora. Pharmaceutical application of 0.5 - 5 mM galactinol on roots was sufficient to elicit ISR in wild-type Arabidopsis against infection with E. carotovora. The involvement of jasmonic acid (JA) signaling on the ISR was validated to detect increased expression of the indicator gene PDF1.2. The T-DNA insertion mutant also compromised tolerance by increasing galactinol content in the O6-colonized plant against drought or high salt stresses. Taken together, our results indicate that primed expression of the galactinol synthase gene AtGolS1in the O6-colonized plants can play a critical role in the ISR against infection with E. carotovora, and in the tolerance to drought or high salt stresses.

Associations of Polymorphisms in the Mx1 Gene with Immunity Traits in Large WhitexMeishan F2 Offspring

  • Li, X.L.;He, W.L.;Deng, C.Y.;Xiong, Y.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1651-1654
    • /
    • 2007
  • The mouse myxovirus resistance protein 1 (Mx1) is known to be sufficient to confer resistance to influenza viruses, and the gene encoding Mx1 is, therefore, an interesting candidate gene for disease resistance in farm animals. The porcine Mx1 gene has already been identified and characterized based on its homology with mouse Mx1; the full-length coding region of the pig Mx1 gene spans 2,545 bp (M65087) and is organized into 17 exons compared with the human ortholog mRNA. In this study, the exons 9, 10 and 11 and introns 6 and 9 of the porcine Mx1 gene were cloned and sequenced. Two SNPs were identified in exons 9, 10 and 11 but none of the SNPs led to an amino acid exchange, and the other eleven variants were detected in introns 6 and 9, respectively. Differences in allele frequency between Meishan and other pig breeds were observed within intron 6, of which an $A{\rightarrow}G$ substitution at position 371 was detected as an SnaBI PCR-RFLP. The association analysis using the Large White${\times}$Meishan $F_2$ offspring suggested that the Mx1 genotype was associated with variation in several immunity traits that are of interest in pig breeding. However, further investigations in more populations are needed to confirm the above result.

Role of Integrin-Linked Kinase in Multi-drug Resistance of Human Gastric Carcinoma SGC7901/DDP Cells

  • Song, Wei;Jiang, Rui;Zhao, Chun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5619-5625
    • /
    • 2012
  • Gastric carcinoma is a leading cause of cancer death in the world and multi-drug resistance (MDR) is an essential aspect of gastric carcinoma chemotherapy failure. Recent studies have shown that integrin-linked kinase (ILK) is involved in metastasis of human tumors, expression silencing of ILK inhibiting the metastasis of several types of cultured human cancer cells. However, the role and potential mechanism of ILK to reverse the multi-drug resistance in human gastric carcinoma is not fully clear. In this report, we focused on roles of expression silencing of ILK in multi-drug resistance reversal of human gastric carcinoma SGC7901/DDP cells, including increased drug sensitivity to cisplatin, cell apoptosis rates, and intracellular accumulation of Rhodamine-123, and decreased mRNA and protein expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), excision repair cross-complementing gene 1 (ERCC1), glutathione S-transferase -${\pi}$ (GST-${\pi}$) and RhoE, and transcriptional activation of AP-1 and NF-${\kappa}B$ in ILK silenced SGC7901/DDP cells. We also found that there was a decreased level of p-Akt and p-ERK. The results indicated that ILK might be used as a potential therapeutic strategy to combat multi-drug resistance through blocking PI3K-Akt and MAPK-ERK pathways in human gastric carcinoma.

임상분리 Staphylococcus속 균주로부터 마크로라이드-린코사마이드-스트렙토그라민 B(MLS)계 항생물질에 대한 새로운 유도내성 유전자의 검색 (Screening of Novel Inducible Resistance Gene to Macrolide-Lincosamide-Streptogramin B (MLS) Antibiotics from Clinical Isolates of Staphylococcus spp)

  • 오정자;권애란;이미정;김숙경;최성숙;최응칠;김병각
    • Biomolecules & Therapeutics
    • /
    • 제1권2호
    • /
    • pp.177-182
    • /
    • 1993
  • From 84 clinical isolates of Staphylococcus species, ten strains showing inducible resistance to MLS antibiotics were selected by disk agar diffusion method. Colony hybridization was executed using two MLS inducible resistance genes, ermA and ermC, previously identified from S. aureus as probes. S. hemolyticus 401 and S. epidermidis 542 whose genes were not homologous to those probes were finally selected. It was determined that the resistance genes of S. hemolyticus 401 and S. epidermidis 542 were not homologous to ermA, ermC and ermAM by Southern hybridization. S. epidermidis 542 had a plasmid DNA. To know if the plasmid may have genes related to inducible resistance, it was attempted to transform B. subtilis BR151 and S. aureus RN4220 with the plasmid prepared from S. epidermidis 542. It was shown that the gene related to inducible resistance to MLS antibiotics did not exist in this plasmid. These results indicate that two clinical isolates of S. hemolyticus 401 and S. epidermidis 542 had novel genes which were not homologous to MLS resistance genes identified previously. It was assumed that these genes may exist in chromosomal DNA.

  • PDF

Macrolide계 항균제 내성 출현과 소아에서의 임상적 적용 (Emergence of macrolide resistance and clinical use of macrolide antimicrobials in children)

  • 최은화
    • Clinical and Experimental Pediatrics
    • /
    • 제51권10호
    • /
    • pp.1031-1037
    • /
    • 2008
  • Macrolide antimicrobial agents including erythromycin, roxithromycin, clarithromycin, and azithromycin are commonly used in the treatment of respiratory tract infections in children. Newer macrolides that have structural modifications of older drug erythromycin show improved change in the spectrum of activity, dosing, and administration. However, recent studies reported that increasing use of macrolide antibiotics is the main force driving the development of macrolide resistance in streptococci. In particular, azithromycin use is more likely to select for macrolide resistance with Streptococcus pneumoniae than is clarithromycin use, a possible reflection of its much longer half life. Recently, erythromycin resistance rates of S. pneumoniae and Streptococcus pyogenes are rapidly increasing in Korea. Two main mechanisms of acquired macrolide resistance have been described, altered binding site on the bacterial ribosome encoded by the ermB gene and active macrolide efflux pump encoded by the mef gene. Relationship between the susceptibility of S. pneumoniae and the response to macrolides has been shown in studies of acute otitis media, but less clear in cases of pneumonia. This article reviews the spectrum of activity, pharmacokinetic properties, mechanisms of action and resistance, and clinical implication of resistance on the treatment of respiratory tract infections in children.

Production of bialaphos-resistant Nierembergia repens by electroporation

  • Shizukawa, Yoshiaki;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • 제2권3호
    • /
    • pp.219-226
    • /
    • 2008
  • Transgenic plants with the herbicide-resistance gene (bar gene) were obtained via organogenesis from isolated mesophyll protoplasts of Nierembergia repens after applying electroporation. Transient ${\beta}-glucuronidase$ (GUS) activity of electroporated protoplasts assayed 2 days after applying an electric pulse showed that optimum condition (transient GUS activity 319 pmol 4 MU/mg per min and plating efficiency 2.43%) for electroporation was 0.5 kV/cm in field strength and $100{\mu}F$ in capacitance. The protoplasts electroporated with the bar gene at this condition initiated formation of microcolonies on medium after 2 weeks. After 4 weeks of culture, equal volume of fresh 1/2-strength Murashige and Skoog (MS) medium containing 0.2 mg/l bialaphos was added for selection of transformed colonies. After 6 weeks of culture, growing colonies were transferred onto regeneration medium containing 1.0 mg/l bialaphos, on which they formed adventitious shoots 1-2 months after electroporation. The adventitious shoots rooted easily after transfer onto MS medium with bialaphos lacking plant-growth regulators. Transformation of these regenerants with the bar gene was confirmed by Southern analysis. Some of the transformants showed strong resistance to the application of bialaphos solution at 10.0 mg/l.

Eveluation of line probe assay in detecting rifampicin resistance of mycobacterium tuberculosis

  • Park, Young-Kil;Cho, Snag-Hyun;Kuk, Na-Byoung;Song, Chul-Yong;Bai, Gill-Han;Kim, Sang-Jae
    • Journal of Microbiology
    • /
    • 제35권3호
    • /
    • pp.177-180
    • /
    • 1997
  • The purpose of this study was to evaluate the efficiency of Line Probe Assay (LiPA) in detecting the rpoB gene mutation of clinically isolated Mycobacterium tuberculosis (MTB) and to compare the level of resistance to the various rifamycins with their mutation sites. The mutation in the rpoB gene was found in 84 (97.6%) out of 86 rifampicin (RMP) resistant strains as determined by LiPA. No mutation was observed in 2 RMP resistant strains and in any of 38 RMP susceptible strains tested. Only one of 3 strains with .DELTA.5/R5, one of 2 strains with .DELTA.3, and one of 3 strains with .DELTA.2/R2 LiPA profile showed a slightly lower level of resistance to the rifapentine than the other strains. Although we could not find correlations between mutation sites in the rpoB gene and the level of susceptibility to the various rifamycins, the LiPA is recommended as a fast screening tool for detection of RMP resistant MTB.

  • PDF