• Title/Summary/Keyword: Resin-based cement

Search Result 102, Processing Time 0.021 seconds

Type and Characteristics of Polymer-based Luting Materials (레진시멘트의 종류와 특성)

  • Kim, Ah-Jin;Bae, Ji-Myung
    • The Journal of the Korean dental association
    • /
    • v.53 no.3
    • /
    • pp.178-186
    • /
    • 2015
  • Dental polymer-based luting materials are classified into esthetic resin cement, adhesive resin cement and self-adhesive resin cement. Due to the different component of each type of resin cement, the preconditioning method of tooth surface and the steps are different from each type of resin cement. The pre-treatment of adherend (ceramic, resin and metal) surface also varies with the type of resin cement and the manufacturer. In this study, the characteristics of each type of resin cement, mechanical properties, indication and advantages were investigated. Through these, clinical tips on using resin cements were suggested.

The Effects of Polyurethane Resin on the Water Stability of HAC/PVA Based MDF Cement Composites (Polyurethane 첨가에 의한 HAC/PVA계 MDF 시멘트 복합재료의 수분안정성 영향)

  • 박춘근;김태진;김병권;엄태형;노준석;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1037-1044
    • /
    • 1997
  • Mechanical properties and water stability of HAC/PVA based MDF cement composite were investigated using polyurethane(PU) resin, silane coupling agent and various PVA. The results were as follows ; The flexural strength of MDF cement composite increased as increasing with PVA content. Low-viscosity PVA developed higher flexural strength than high-viscosity PVA under a drying curing condition. But the strength of water immersed specimen decreased. Water stability of MDF cement improved as increasing with content of PU. Consequently, water stability of polyurethane 7% added MDF cement was about 2 times higher than that of the controlled specimen. Furthermore, the strength and water stability of diamine group based silane couling agent in using MDF cement increased and improved dramatically.

  • PDF

The selection criteria of temporary or permanent luting agents in implant-supported prostheses: in vitro study

  • Alvarez-Arenal, Angel;Gonzalez-Gonzalez, Ignacio;deLlanos-Lanchares, Hector;Brizuela-Velasco, Aritza;Ellacuria-Echebarria, Joseba
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • PURPOSE. The use of temporary or permanent cements in fixed implant-supported prostheses is under discussion. The objective was to compare the retentiveness of one temporary and two permanent cements after cyclic compressive loading. MATERIALS AND METHODS. The working model was five solid abutments screwed to five implant analogs. Thirty Cr-Ni alloy copings were randomized and cemented to the abutments with one temporary (resin urethane-based) or two permanent (resin-modified glass ionomer, resin-composite) cements. The retention strength was measured twice: once after the copings were cemented and again after a compressive cyclic loading of 100 N at 0.72 Hz (100,000 cycles). RESULTS. Before loading, the retention strength of resin composite was 75% higher than the resin-modified glass ionomer and 2.5 times higher than resin urethane-based cement. After loading, the retentiveness of the three cements decreased in a non-uniform manner. The greatest percentage of retention loss was shown by the temporary cement and the lowest by the permanent resin composite. However, the two permanent cements consistently show high retention values. CONCLUSION. The higher the initial retention of each cement, the lower the percentage of retention loss after compressive cyclic loading. After loading, the resin urethane-based cement was the most favourable cement for retrieving the crowns and resin composite was the most favourable cement to keep them in place.

Influence of cement thickness on resin-zirconia microtensile bond strength

  • Lee, Tae-Hoon;Ahn, Jin-Soo;Shim, June-Sung;Han, Chong-Hyun;Kim, Sun-Jai
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • PURPOSE. The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS. Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 ${\mu}m$, storage: thermocycled or not). They were cut into microbeams and stored in $37^{\circ}C$ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (${\alpha}$=95%). RESULTS. All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION. When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.

The Study of Water Stability of MDF Cement Composite by Addition of Epoxy Resin and Manufacturing Process (Epoxy Resin 첨가 및 제조공정에 따른 MDF 시멘트 복합재료의 수분안정성 연구)

  • 노준석;김태진;박춘근;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.371-377
    • /
    • 1998
  • The effect of epoxy resin on the water stability of HAC/PVA based MDF cement composite were stu-died through the three different forming methods calendering extruding and warm pressing. In prexing step the epoxy resin was added in 5-15wt% of cement weight. The 3-point flexural strength of each dry and wet specimen which were immersed in water during 3. 7, 14 days was estmated and the mi-crostructural change of epoxy resin-added MDF cement composite due to water immersion was charac-terized by scanning electron microscopy. As the addition amount of epoxy resin the im-provement of water stability of MDF cement composite was achieved in most case. Especially through the warm press forming method the effectiveness of epoxy resin addition to the water stability was enhanced. When the epoxy resin was added by 5wt% to 7wt% the optimum flexural strength and water stability

  • PDF

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

Prediction of Compressive Strength of Unsaturated Polyester Resin Based Polymer Concrete Using Maturity Method (성숙도 방법을 이용한 불포화 폴리에스터 수지 폴리머 콘크리트의 압축강도 예측)

  • Choi, Ki-Bong;Jin, Nan Ji;Lee, Youn-Su;Yeon, Kyu-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.19-27
    • /
    • 2017
  • This study investigated to predict the compressive strength of unsaturated polyester resin based polymer concrete using the maturity method. The test results show that the development of the compressive strength increased exponentially until an age of 24 hours. After 24 hours, the development of the compressive strength just increased gradually. This test result shows that the strength of unsaturated polyester resin based polymer concrete was developed mainly at the early age. Estimated datum temperature of unsaturated polyester resin based polymer concrete was $-20.67^{\circ}C$ which was much lower than of datum temperature ($-10^{\circ}C$) of Portland cement concrete. Also, this study result shows that the existing maturity index associated with Portland cement concrete was not applicable for polymer concrete because curing time of Portland cement concrete is different clearly with curing time of polymer concrete. The cause of different curing time was that there were different curing mechanisms between Portland cement concrete and polymer concrete. In order to best apply the experimental data to a model, CurveExpert Professional, the commercial software, was used to determine the predictive model regarding the compressive strength of unsaturated polyester resin based polymer concrete. As a result, Gompertz Relation or Weibull Model was an appropriate model as a predictive model. The proposed model can be used to predict the compressive strength, especially, it is more useful when the maturity is in the range between $40^{\circ}C{\cdot}h^{0.4}$ and $900^{\circ}C{\cdot}h^{0.4}$.

THE EFFECT OF TEMPORARY FILLING MATERIALS ON THE ADHESION BETWEEN DENTIN ADHESIVE-COATED SURFACE AND RESIN INLAY (레진코팅된 상아질 표면과 레진인레이간 결합에 임시가봉재가 미치는 영향)

  • Kim, Tae-Gun;Lee, Kwang-Won;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.6
    • /
    • pp.553-559
    • /
    • 2008
  • The purpose of this research was to compare the microtensile bond strength of resin coated surface and resin inlay according temporary filling materials prior to applying self-adhesive resin cement. Caviton(GC, Japan), Provifil(Promedica, Neumunster, Germany), Provifil(Promedica, Neumunster, Germany) & petrolatum, and Eugenol-based cement, Tembond(Kerr, Orange CA, USA) were used as temporary filling materials. After fabrication of Tescera(Bisco, Schamburg IL, USA), it was bonded with a self-adhesive resin cement, Rely X unicem(3M, St. Paul. Minn, USA). After this procedure, the microtensile bond strength was measured and it was analyzed through one-way ANOVA and Duncan test(p<0.05). Caviton(GC, Tokyo, Japan) showed statistical difference except for the control(group I) and the saliva(group II)(p<0.05). Provifil(group IV), Provifil & petroneum(group V), Tembond(group VI) had lower microtensile bond strength.

Effect of resin cement color on the color of commercially available zirconia crown (레진시멘트 색상이 상용 지르코니아 크라운의 색상에 미치는 영향)

  • Ha, Hyeon-Seung;Lim, Bum-Soon;Rhee, Sang-Hoon
    • Korean Journal of Dental Materials
    • /
    • v.45 no.4
    • /
    • pp.233-242
    • /
    • 2018
  • The purpose of this study is to evaluate the effect of resin cement color on the color of commercially available zirconia crown. The zirconia and resin cements used for the experiment were $NuSmile^{(R)}$ ZR Zirconia LT Shade (LT), $RelyX^{TM}$ U200 TR, A2, and A3O (TR, A2, A3O). The disks of zirconia and resin cements with diameters of 5 mm and thicknesses of 1 mm were prepared. Five disks were made for each specimen. The CIE $L^*a^*b^*$ values of zirconia, resin cements and the combinations thereof were measured on black and white backgrounds, respectively, using a spectrophotometer. The color effect of resin cement on the color of the zirconia crown was evaluated by calculating translucency parameter (TP), contrast ratio (CR), and color differences (${\Delta}E{^*}_{ab}$) based on the measured CIE $L^*a^*b^*$ values. The statistical significances were verified by one-way ANOVA and the Tukey-multiple comparisons tests. As a result, the TP and CR values were decreased (p<0.05) and increased, respectively, in the combination of zirconia and resin cement disks compared to zirconia disk per se. When using the black background, the ${\Delta}E{^*}_{ab}$ values between zirconia and the combination of the zirconia and three resin cement disks were imperceptible level. The A3O showed the lowest ${\Delta}E{^*}_{ab}$ value among three resin cements. When using the white background, the ${\Delta}E{^*}_{ab}$ values between zirconia and the combination of zirconia and TR resin cement (LT/TR) disks showed acceptable level. However, the ${\Delta}E{^*}_{ab}$ values between zirconia and the combination of zirconia and A2 resin cement (LT/A2) disks showed unacceptable level. Meanwhile, the ${\Delta}E{^*}_{ab}$ values between zirconia and the combination of zirconia and A3O resin cement (LT/A3O) disks showed perceptible but acceptable level. Within the limits of this study, the colors of resin cements did not cause unacceptable color changes of zirconia except the combination of LT/A2 on the white background. The resin cement that gave the least color changes to zirconia was A3O. This means that the resin cement A3O is recommended to use for minimizing color changes when cementing commercially available zirconia crown to tooth.

Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements

  • Shin, Hyeongsoon;Ko, Hyunjung;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.3
    • /
    • pp.167-175
    • /
    • 2016
  • Objectives: Endodontically treated teeth with insufficient tooth structure are often restored with esthetic restorations. This study evaluated the cytotoxicity and biological effects of yttria partially stabilized zirconia (Y-TZP) blocks in combination with several dental cements. Materials and Methods: Pairs of zirconia cylinders with medium alone or cemented with three types of dental cement including RelyX U200 (3M ESPE), FujiCEM 2 (GC), and Panavia F 2.0 (Kuraray) were incubated in medium for 14 days. The cytotoxicity of each supernatant was determined using 3-(4,5-dimethylthiazole- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays on L929 fibroblasts and MC3T3-E1 osteoblasts. The levels of interleukin-6 (IL-6) mRNA were evaluated by reverse transcription polymerase chain reaction (RT-PCR), and IL-6 protein was evaluated by enzyme-linked immunosorbent assays (ELISA). The data were analyzed using one-way ANOVA and Tukey post-hoc tests. A p < 0.05 was considered statistically significant. Results: The MTT assays showed that MC3T3-E1 osteoblasts were more susceptible to dental cements than L929 fibroblasts. The resin based dental cements increased IL-6 expression in L929 cells, but reduced IL-6 expression in MC3T3-E1 cells. Conclusions: Zirconia alone or blocks cemented with dental cement showed acceptable biocompatibilities. The results showed resin-modified glass-ionomer based cement less produced inflammatory cytokines than other self-adhesive resin-based cements. Furthermore, osteoblasts were more susceptible than fibroblasts to the biological effects of dental cement.