• Title/Summary/Keyword: Resin cement system

Search Result 74, Processing Time 0.025 seconds

Effect of Consolidation using Artificial Porous Material for Stone Cultural Property (인공 다공질체를 이용한 석조문화재 강화제의 처리효과)

  • Lee, Jae-Man;Lee, Myeong-Seong;Kim, Jae-Hwan;Lee, Mi-Hye
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.325-334
    • /
    • 2010
  • In order to clarify the effect of consolidant, the artificial porous material with low intensity was manufactured using granite powder and Portland cement. We have prepared four kinds of alkoxysilane system consolidants, a acrylic resin and a epoxy resin and investigated about characteristics before and after consolidation. As a result of the research, Silres BS OH 100 was effective for density and surface hardness. SS-101 with hydrophobicity and Site SX-RO with hydrophilicity had the good durability over salts weathering. On the other hand, Syton HT-50 and Paraloid B72 were easily destructed by salt weathering because they were concentrated on surface area by the low penetration depth. Araldite 2020 was the most effective consolidant for improvement of physical properties.

A comparative evaluation of fracture resistance of endodontically treated teeth restored with different post core systems - an in-vitro study

  • Makade, Chetana S.;Meshram, Ganesh K.;Warhadpande, Manjusha;Patil, Pravinkumar G.
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • PURPOSE. To compare the fracture resistance and the mode of failure of endodontically treated teeth restored with different post-core systems. MATERIALS AND METHODS. Root canal treatment was performed on 40 maxillary incisors and the samples were divided into four groups of 10 each. For three experimental groups post space preparation was done and teeth were restored with cast post-core (Group B), stainless steel post with composite core (Group C) and glass fiber post with composite core using adhesive resin cement (Group D). Control group (A) samples were selected with intact coronal structure. All the samples were prepared for ideal abutment preparation. All the samples were subjected to a load of 0.5 mm/min at $130^{circ}$.until fracture occurred using the universal testing machine. The fracture resistance was measured and the data were analyzed statistically. The fracture above the embedded resin was considered to be favorable and the fracture below the level was considered as unfavorable. The statistical analysis of fracture resistance between different groups was carried out with t-test. For the mode of failure the statistical analysis was carried out by Kruskal-Wallis test and Chi-Square test. RESULTS. For experimental group Vs control group the fracture resistance values showed significant differences (P<.05). For the mode of failure the chi-square value is 16.1610, which means highly significant (P=.0009) statistically. CONCLUSION. Endodontically treated teeth without post core system showed the least fracture resistance demonstrating the need to reinforce the tooth. Stainless steel post with composite core showed the highest fracture resistance among all the experimental groups. Teeth restored with the Glass fiber post showed the most favorable fractures making them more amenable to the re-treatment.

Comparison of the fit accuracy of zirconia-based prostheses generated by two CAD/CAM systems

  • Ha, Seok-Joon;Cho, Jin-Hyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.439-448
    • /
    • 2016
  • PURPOSE. The purposes of this study are to evaluate the internal and marginal adaptation of two widely used CAD/CAM systems and to study the effect of porcelain press veneering process on the prosthesis adaptation. MATERIALS AND METHODS. Molar of a lower jaw typodont resin model was prepared by adjusting a 1.0 mm circumferential chamfer, an occlusal reduction of 2.0 mm, and a $5^{\circ}$ convergence angle and was duplicated as an abrasion-resistant master die. The monolithic crowns and copings were fabricated with two different CAD/CAM system-Ceramil and Zirkonzahn systems. Two kinds of non-destructive analysis methods are used in this study. First, weight technique was used to determine the overall fitting accuracy. And, to evaluate internal and marginal fit of specific part, replica technique procedures were performed. RESULTS. The silicone weight for the cement space of monolithic crowns and copings manufactured with Ceramil system was significantly higher than that from Zirkonzahn system. This gap might cause the differences in the silicone weight because the prostheses were manufactured according to the recommendation of each system. Marginal discrepancies of copings made with Ceramil system were between 106 and $117{\mu}m$ and those from Zirkonzahn system were between 111 and $115{\mu}m$. Marginal discrepancies of copings made with Ceramil system were between 101 and $131{\mu}m$ and those from Zirkonzahn system were between 116 and $131{\mu}m$. CONCLUSION. Marginal discrepancy was relatively lower in Ceramil system and internal gap was smaller in Zirkonzahn system. There were significant differences in the internal gap of monolithic crown and coping among the 2 CAD/CAM systems. Marginal discrepancy produced from the 2 CAD/CAM systems were within a reported clinically acceptable range of marginal discrepancy.

Effectiveness of some conventional seismic retrofitting techniques for bare and infilled R/C frames

  • Kakaletsis, D.J.;David, K.N.;Karayannis, C.G.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.499-520
    • /
    • 2011
  • The effectiveness of a technique for the repair of reinforced concrete members in combination with a technique for the repair of masonry walls of infilled frames, damaged due to cyclic loading, is experimentally investigated. Three single - story, one - bay, 1/3 - scale frame specimens are tested under cyclic horizontal loading, up to a drift level of 4%. One bare frame and two infilled frames with weak and strong infills, respectively, have been tasted. Specimens have spirals as shear reinforcement. The applied repair technique is mainly based on the use of thin epoxy resin infused under pressure into the crack system of the damaged RC joint bodies, the use of a polymer modified cement mortar with or without a fiberglass reinforcing mesh for the damaged infill masonry walls and the use of CFRP plates to the surfaces of the damaged structural RC members, as external reinforcement. Specimens after repair, were retested in the same way. Conclusions concerning the effectiveness of the applied repair technique, based on maximum cycles load, loading stiffness, and hysteretic energy absorption capabilities of the tested specimens, are drawn and commented upon.

FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS (지르코니아 단일구조 전부도재관의 파절강도)

  • Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.157-164
    • /
    • 2006
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness(0.5 mm, 0.8 mm, 1.1 mm) and IPS Empress II ceramic crown of 1.5 mm thickness. Material and method: Eight crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system(Kavo, Germany) and eight Empress II crowns were made from silicone mold and wax pattern. Each crown group was finished in accordance with the specific manufacturer s instruction. All crowns were luted to the metal dies using resin cement and mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test(p<.05) were applied to the data. Results and Conclusion: 1. The fracture strength of the zirconia monolithic all-ceramic crown was higher thickness increased(p<.05). 2 The fracture strength of 1.1 mm thickness zirconia monolithic all-ceramic crown was higher than the fracture strength of 1.5 mm thickness IPS Empress II crown(p<.05). 3. The fracture strength of 0.5 mm thickness zirconia monolithic all-ceramic crown exceeded maximum occlusal forces.

The metameric effect of monolithic zirconias with varying yttrium ratios

  • Mehmet Ejder Guven;Ozlem Kara
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.48-56
    • /
    • 2024
  • PURPOSE. To evaluate the metameric disparities among monolithic zirconia materials with differing yttrium compositions across various lighting conditions. MATERIALS AND METHODS. Thirty-six square-shaped zirconia samples measuring 10 × 10 × 0.5 mm were prepared from monolithic zirconia materials with three different yttrium contents. A 0.2 mm thick layer of polymerized dual-polymerizable self-adhesive resin cement was created using a silicone mold with the same dimensions as the prepared zirconia specimens. To evaluate metamerism, color measurements were conducted using a spectrophotometer device on a neutral gray background in a color measurement cabinet that offers four different illumination environments. All samples underwent aging by subjecting them to 10000 thermal cycles using a thermal cycle tester. Following thermal aging, color measurements were taken once more, and the data were recorded using the CIE L*, a*, b* color system. Two-way ANOVA and Post-hoc Bonferroni tests were employed to analyze the data. RESULTS. It was observed that there was no statistical difference among the color measurements made in different illumination environments of the monolithic zirconia ceramics used to evaluate metamerism (P > .05). This observation remained consistent both before and after thermal aging. After thermal aging, the color of monolithic zirconia materials exhibited a tendency towards red and yellow hues, accompanied by a decrease in brightness levels. CONCLUSION. It can be stated that different illumination conditions did not affect the metamerism of monolithic zirconia materials, but there was a color change in monolithic zirconia materials after a thermal aging period equivalent to one year.

The effect of surface treatment conditioning on shear bond strength between zirconia and dental resin cements (지르코니아 세라믹의 표면처리에 따른 치과용 접착제의 전단결합강도)

  • Kim, Ji-Hye;Seo, Jae-Min;Ahn, Seung-Geun;Park, Ju-Mi;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the effect of surface treatment on the shear bond strength of zirconia ceramic to 3 resin cements. Materials and methods: A total of 143 disk-shaped Zirconia blocks (HASS Co., Gangneung, Korea) were randomly divided into three treatment groups: (1) only 50 ${\mu}m$ $Al_2O_3$ sandblasting, (2) 50 ${\mu}m$ $Al_2O_3$ sandblast and zircona liner, (3) 50 ${\mu}m$ $Al_2O_3$ sandblasting and Rocatec (3M ESPE, Seefeld, Germany). Bistite II (Tokuyama Dental Co., Japan), Panavia F (Kuraray Medical, Japan), and Superbond C&B (Sun Medical, Japan) were used to cement onto the zirconia. After 24h of storage in distilled water, shear bond strength was evaluated. High value group was re-tested after thermocycling at 5,000 cycles(5-$55^{\circ}C$). Shear bond strength data were analyzed with one-way ANOVA, two-way ANOVA test and Post Hoc Test (${\alpha}$=.05). Shear bond strength data before and after thermocycling were analyzed with Independent sample T test (${\alpha}$=.05). Results: Super-bond C&B treated with Rocatec showed the most high shear bond strength. Super-bond C&B groups resulted in significantly higher than other cement groups (P<.05). Rocatec groups resulted in significantly higher than other surface treatment groups (P<.05). Shear bond strength has increased in Panavia F treated with Zirconia liner (P<.05). After thermocycling, shear bond strength was increased in Super-bond C&B treated with Rocatec but decreased in other groups (P<.05). Conclusion: Super-bond C&B cement resulted the highest shear bond strength and Rocatec system enhanced the shear bond strength. After thermocycling, shear bond strength has decreased in most resin cements except Super-bond C&B treated with Rocatec.

Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown

  • Ji, Min-Kyung;Park, Ji-Hee;Park, Sang-Won;Yun, Kwi-Dug;Oh, Gye-Jeong;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • PURPOSE. This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. MATERIALS AND METHODS. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau$^{(R)}$Zirconia and ZENOSTAR$^{(R)}$ZR translucent) and lithium disilicate glass ceramic (IPS e.max$^{(R)}$press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. RESULTS. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max$^{(R)}$press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau$^{(R)}$Zirconia) (P<.05). Both fabrication systems and finish line configurations significantly influenced the absolute marginal discrepancy (P<.05). CONCLUSION. The lithium disilicate glass ceramic crown (IPS e.max$^{(R)}$press) had significantly smaller marginal gap than the CAD-CAM anatomic contour zirconia crown system (Prettau$^{(R)}$Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR$^{(R)}$ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau$^{(R)}$Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max$^{(R)}$press) had overextended margins.

A STUDY ON THE MARGINAL FIT OF ALL-CERAMIC CROWNS USING CCD CAMERA (CCD카메라를 이용한 수종 전부도재관의 변연적합도에 관한 연구)

  • Moon, Byoung-Hwa;Yang, Jae-Ho;Lee, Sun-Hyung;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.2
    • /
    • pp.273-292
    • /
    • 1998
  • The purpose of this study was to evaluate marginal fit of four all-ceramic crown systems 1) conventional In-Ceram, 2) copy-milled In-Ceram using Celay system, 3) IPS Empress, 4) OPC(Optimal Pressable Ceramic). All ceramic crowns were made on epoxy dies. The fabricated crowns were sandblasted, cleaned with ultrasonic cleansing, silanated, and cemented with Bistite composite resin cement. the selected marginal areas of the crowns were the labial, lingual, mesial, and distal surface. Each selected area of surface was $0.6{\times}1.6mm$ in dimension. The image of each marginal area was captured to computer files using DT-55 Frame Grabber and light microscope connected CCD camera. The marginal gaps were measured every $70{\mu}m$ using computer image analysis program. The results obtained were summarized as follows : 1. The marginal fit of four all-ceramic crowns were significantly different from each other(p<0.01), and mean marginal fit values obtained were $31.42{\pm}16.52{\mu}m$ in conventional In-Ceram, $55.45{\pm}27.90{\mu}m$ in copy-milled In-Ceram using Celay system, $44.36{\pm}24.59{\mu}m$ in IPS Empress, $47.21{\pm}20.42{\mu}m$ in OPC. 2. In the marginal fit of conventional In-Ceraw and copy-milled In-Ceram crowns using Celay system there was no significant difference between mesiodistal and buccolingual surface, but in the marginal fit of IPS Empress and OPC crowns, there was significant difference between mesiodistal and buccolingual surface(p<0.01). 3. The marginal fit of four kinds of all-ceramic crowns was clinically acceptable.

  • PDF

A STUDY ON THE MARGINAL FIDELITIES AND FRACTURE STRENGTH OF IPS EMPRESS $2^(R)$ CERAMIC CROWNS (IPS Empress $2^(R)$를 이용한 전부도재관의 변연적합성과 파절강도에 관한 연구)

  • Yu, Ji-Hyoung;Kim, Yong-Cheol;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.606-617
    • /
    • 2000
  • The purpose of this study was to measure the marginal fidelities and the fracture strength of IPS Empress $2^{(R)}\;and\;In-Ceram^{(R)}$ ceramic crowns. After constructed of 12 experimental dies for each group, ceramic crowns were fabricated on the metal master dies prepared on the maxillary right premolar Marginal gaps were measured on the specimen between the margin of each crown and finish-ing line of the metal master die by using stereo-microscope($SZ-ST^{(R)}$ Olympus, Japan) and all specimens were cemented on the metal master die with Bistite $II^{(R)}$ (Tokuyama soda Co, LTD., Japan) resin cement. Finally marginal gaps were measured again. To measure of the fracture strength, buccal incline on the functional cusp of specimens were loaded until the catastrophic failure occurred by using the AGS-1000 $D^{(R)}$(Shimadzu, Japan). The result of marginal fidelities and fracture strength were statistically analyzed with the SPSS version 8.0 programs. The results of this study were as follows : 1. No significant difference was found in the mean marginal fidelities and fracture strength between the IPS Empress $2^{(R)}\;and\;In-Ceram^{(R)}$. 2. In comparison of marginal fidelities between before and after cementation, there was significant difference(P<0.05). The IPS Empress 2 system was shown in this study that had good marginal fidelities and fracture strength compared to In-Ceram ceramics. Although this system was acceptable to clinical applications, the system still has to be considered long-term researches about marginal fidelities and fracture strength due to the lack of data about the clinical researches.

  • PDF