• 제목/요약/키워드: Resin Stress distribution

검색결과 102건 처리시간 0.025초

Shear bond strength of zirconia to resin: The effects of specimen preparation and loading procedure

  • Chen, Bingzhuo;Yang, Lu;Lu, Zhicen;Meng, Hongliang;Wu, Xinyi;Chen, Chen;Xie, Haifeng
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권6호
    • /
    • pp.313-323
    • /
    • 2019
  • PURPOSE. Shear bond strength (SBS) test is the most commonly used method for evaluating resin bond strength of zirconia, but SBS results vary among different studies even when evaluating the same bonding strategy. The purpose of this study was to promote standardization of the SBS test in evaluating zirconia ceramic bonding and to investigate factors that may affect the SBS value of a zirconia/resin cement/composite resin bonding specimen. MATERIALS AND METHODS. The zirconia/resin cement/composite resin bonding specimens were used to simulate loading with a shear force by the three-dimensional finite element (3D FE) modeling, in which stress distribution under uniform/non-uniform load, and different resin cement thickness and different elastic modulus of resin composite were analyzed. In vitro SBS test was also performed to validate the results of 3D FE analysis. RESULTS. The loading flat width was an important affecting factor. 3D FE analysis also showed that differences in resin cement layer thickness and resin composite would lead to the variations of stress accumulation area. The SBS test result showed that the load for preparing a SBS specimen is negatively correlated with the resin cement thickness and positively correlated with SBS values. CONCLUSION. When preparing a SBS specimen for evaluating bond performance, the load flat width, the load applied during cementation, and the different composite resins used affect the SBS results and therefore should be standardized.

인공치와 의치상의 재질에 따른 의치상 하부 지지조직에의 응력전달에 관한 연구 (A STUDY OF THE STRESS TRANSMISSION OF VARIOUS ARTIFICIAL TEETH AND DENTURE BASE MATERIALS TO THE UNDER-LYING SUPPORTING TISSUES)

  • 정형곤;정문규;이호용
    • 대한치과보철학회지
    • /
    • 제27권2호
    • /
    • pp.79-100
    • /
    • 1989
  • The Purpose of this study was to investigate material differences in stress transmission among various artificial teeth and denture base materials. For this study, a two-dimensional finite element model and a two-dimensional photoelastic model of a mandible with complete denture were made. A resin tooth and a porcelain tooth were used as artificial teeth, and a resin base, a metal lined base, and a soft-liner lined base were used as denture bases. An occlusal load was applied and principal stresses generated in the supporting tissues were compared. To test the impact stress transmission, strain gauge attached to the denture base specimens made of the different materials were made in thick and thin groups. Voltage outputs from hitting the specimen with a steel ball were compared. The results were as follows : 1. In FEM, increasing the mucosal thickness reduced the maximum principal stresses in the supporting tissues, but altering the tooth materials and the base materials induced no difference in the stresses. 2. In photoelastic model study, no difference in fringe order among the specimens were observed, but the thick mucosa group and the soft-liner lined group revealed a more uniform distribution of the load. 3. In strain measuring, the impact force transmission was highest in the soft-liner lined group, and was the lowest in the metal lined group(p<0.01). 4. In the thin group using the resin base, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the thick group. In the soft-liner lined group, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the metal lined group. 5. The thick group showed lower impact stress transmission than the thin group(p<0.01).

  • PDF

주상용 몰드변압기의 온도분포와 열응력 해석 (The Temperature Distribution and Thermal Stress Analysis of Mold transformer)

  • 조한구;이운용;한세원
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2000
  • The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. Therefore design time and design cost are decreased by numerical analysis. In this paper, the temperature distribution and thermal stress analysis of 50kVA pole cast resin transformer for power distribution are investigated by FEM program. The temperature change according to load rates of transformer also have been investigated. We have carried out temperature rise test and test results are compared with simulation data.

  • PDF

압축하중시 RPI clasp의 3가지 다른 proximal plate 형태에 따른 지대치 주위조직의 광탄성 응력 분석 (Photoelastic Stress Analysis of the Abutment Surrounding Tissue According to Shape of the Proximal Plate of the RPI Clasp)

  • 최정수;김부섭
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.473-482
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution of the surrounding tissues according to 3 proximal plate types of the RPI clasp. Methods: The removeable partial denture which mandibular right and left second premolars and mandibular molars were lost was attached to a three dimensional photo elastic epoxy resin model. Then 120N of vertical load was applied. After 3-dimensional photoelastic stress analysis was used to record the isochromatic fringe patterns. Results: Kratochvil type guiding plane exhibited little uniform stress distribution on load center and alveolar ridge, but higher stress concentration on buccal surface of second premolar. Krol type guiding plane exhibited the stress concentration on the front of load center and relatively higher stress concentration on buccal surface of first premolar. However, this type had no effect on canine. Researcher type guiding plane showed the stress concentration on second premolar and molar, but the little stress distribution on first premolar. Conclusion: In all types, excessive stress concentration was appeared and three types were not significant different.

적삭중인 공구의 경사면상에 crack을 갖는 경우의 응력해석에 관한 연구 (A study on the stress analysis for rake face of a tool with crack in cutting process)

  • 김원익;남준우
    • 오토저널
    • /
    • 제9권3호
    • /
    • pp.66-75
    • /
    • 1987
  • The determination of stress distributions on the rake face of tool are important to understand the mechanism of metal cutting. For this reason, many researchers have been payed much effort to analyize machining stress distribution on the rake face. The author's photoelastic experiment has shown that the stress distributions on a rake face can be obtained photoelastically by using a specially designed tool made of epoxy resin plate, and also, Stress Intensity Factors $k_{I}$, $k_{II}$ and Crack Extension Angle can be deter mined by using Linear Elastic Fracture Mechanics.ics..

  • PDF

주상용 몰드변압기의 온도분포와 열응력 해석 (The Temperature Distribution and Thermal Stress Analysis of Pole Mold transformer)

  • 조한구;이운용;한세원;김석수
    • 한국전기전자재료학회논문지
    • /
    • 제14권4호
    • /
    • pp.297-301
    • /
    • 2001
  • In this paper, the temperature distribution and thermal stress analysis of 50kVA pole cast resin transformer for power distribution are investigated by FEM program. The one body molding model (Model 1) and air duct model (Model 2) are designed and their temperature distribution are analysed. The temperature rise value is about 105.5 deg in the model 1 and 65.28 de in the model 2. The temperature change of secondary winding is more than primary winding according to load ratio. The concentration part of Von Mises Stress occurs at interface between glass fiber and epoxy.

  • PDF

하악 소구치용 post and core systems의 치근 내부 응력분산 효과에 대한 유한요소법적 연구 (FINITE EIEMENT ANALYSIS OF STRESS DISTRIBUTIONS OF DENTIN BY POST AND CORE SYSTEMS)

  • 홍현자;전영찬;정창모
    • 대한치과보철학회지
    • /
    • 제33권3호
    • /
    • pp.397-412
    • /
    • 1995
  • The purpose of this study was to analyze the stress distribution in the dentin and post structures by the various post core materials and the amount of remaining coronal tooth structures. The 2-dimensional finite element models of mandibular 2nd premolars was divided into seven types according to the various amount of remaining coronal tooth structures. All types were modeled using equal length, diameter and shape of the post. 2 types of post and core materials were used : 1) cast gold post and core 2) stainless steel post and compsite resin core 10 Newton force was applied as follows 1) vertical force on occlusal fossa 2) $45^{\circ}$ oblique force on buccal surface of buccal cusp tip The results were as follows : 1. There was no apparent difference in the pattern of stress distribution according to the amount of remaining coronal tooth structure. 2. There was no apparent difference in the pattern of stress distribution within the dentin according to the post and core materials. A cast gold post and core generated lower dentin stress than a stainless steel post and resin core. 3. Max. dentinal stress resulting from vertical force was observed in the lingual side of dentin around the crown margin.This stress resulting from oblique force was observed in the lingual root surface of alveolar bone crest level.

  • PDF

Comparative Analysis of Stress Distribution in Composite Resin Brackets with Metal Slot of Permanent Maxillary Central Incisor Using the Finite Element Method: A Pilot Study

  • Im, Jae-Jung;Song, Jae-Joon;Kim, Nan-Hee;Heo, Jin-Young;Jung, Gyu-Un;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Korean Dental Science
    • /
    • 제4권2호
    • /
    • pp.46-51
    • /
    • 2011
  • Purpose: For aesthetic reasons, composite resin brackets are widely used. However, related studies are rare. This pilot study sought to compare the stress distributions in two commercially available composite resin brackets with metal slot. Materials and Methods: Two commercially available resin brackets -- full-metal slot resin bracket (fSRB) and partial-metal slot resin bracket (pSRB) with straight wire appliance dimension of $0.022{\times}0.028$ in -- were selected. In each bracket, 3-dimensional finite element models were constructed, and stress level was evaluated using finite element analysis. By loading the tipping force and torsion moment, which are similar to those applied by the stainless steel rectangular wire ($0.019{\times}0.025$ -in), stress distributions were calculated, and von Mises stress values were obtained. Results: In pSRB and fSRB, the stress value of the torque moment was much higher than that of the tipping force. The pSRB showed higher stress value than fSRB in both tipping force and torque moment because of the difference in size and configuration of the metal frame inserted into the slot. More stress was also found to be concentrated on the slot area than the wing area in fSRB. Conclusion: The slot form of fSRB was found to be more resistant to the stress of tipping and torque than the slot form of pSRB. In addition, the slot areas -- rather than the wing areas -- of the bracket showed breakage susceptibility. Therefore, resistance to the torque moment on the slot area should be considered in bracket design.

상악 제1소구치에서 전부도재관의 finish line 형태에 따른 파절강도와 응력 분포에 관한 연구 (Fracture Resistance and Stress Distribution of All Ceramic Crowns with Two Types of Finish Line on Maxillary First Premolar)

  • 이상권;동진근
    • 구강회복응용과학지
    • /
    • 제19권3호
    • /
    • pp.219-237
    • /
    • 2003
  • he purpose of this study was to compare the fracture resistance of the IPS Empress ceramic crown with 1.0mm width rounded shoulder, which is usually recommended in all ceramic crown, and 0.5mm width chamfer finish lines on the maxillary first premolar. 30 sound maxillary first premolars were selected and then storaged in 5% NaOCl and saline. 15 teeth were performed preparation for each group(1.0mm rounded shoulder, 0.5mm chamfer). After 30 stone dies were made for each group, the IPS Empress ceramic crowns were fabricated and cemented with resin cement(Bistite resin cement, Tokuyama Soda Co. LTD., Japan) on the natural teeth. The cemented crowns were mounted on the positioning jig and the universal testing machine(Zwick Z020, Zwick Co., Germany)was used to measure the fracture strength, with stress loading on the occlusal surface between buccal and lingual cusp. And also, three-dimensional finite element model was used to measure the stress distribution with two types of the finish lines(1.0mm rounded shoulder, 0.5mm chamfer) and two loading conditions(both buccal and lingual cusp inclination, lingual cusp inclination only). The result of the this study were as follows. In the fracture resistance experiment according to the finish line, the mean fracture strength of rounded shoulder(842N) showed higher value than that of the chamfer(590N) (p<0.05). In the three dimensional finite element analysis of all ceramic crown, metal die and natural teeth model did not show any differences in stress distribution between finish lines. Generally, when force was loaded on the occlusal inclination of buccal and lingual cusp, the stress was concentrated on the loading point and the central groove of occlusal surface. When force was loaded only on the occlusal inclination of lingual cusp, the stress was concentrated on the lingual finish line and loading point.

Effects of cementless fixation of implant prosthesis: A finite element study

  • Lee, Hyeonjong;Park, Soyeon;Kwon, Kung-Rock;Noh, Gunwoo
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권6호
    • /
    • pp.341-349
    • /
    • 2019
  • PURPOSE. A novel retentive type of implant prosthesis that does not require the use of cement or screw holes has been introduced; however, there are few reports examining the biomechanical aspects of this novel implant. This study aimed to evaluate the biomechanical features of cementless fixation (CLF) implant prostheses. MATERIALS AND METHODS. The test groups of three variations of CLF implant prostheses and a control group of conventional cement-retained (CR) prosthesis were designed three-dimensionally for finite element analysis. The test groups were divided according to the abutment shape and the relining strategy on the inner surface of the implant crown as follows; resin-air hole-full (RAF), resin-air hole (RA), and resin-no air hole (RNA). The von Mises stress and principal stress were used to evaluate the stress values and distributions of the implant components. Contact open values were calculated to analyze the gap formation of the contact surfaces at the abutment-resin and abutment-implant interfaces. The micro-strain values were evaluated for the surrounding bone. RESULTS. Values reflecting the maximum stress on the abutment were as follows (in MPa): RAF, 25.6; RA, 23.4; RNA, 20.0; and CR, 15.8. The value of gap formation was measured from 0.88 to 1.19 ㎛ at the abutment-resin interface and 24.4 to 24.7 ㎛ at the abutment-implant interface. The strain distribution was similar in all cases. CONCLUSION. CLF had no disadvantages in terms of the biomechanical features compared with conventional CR implant prosthesis and could be successfully applied for implant prosthesis.