• 제목/요약/키워드: Residual volume

검색결과 425건 처리시간 0.023초

파괴역학을 기초로 한 침탄치차의 굽힘강도에 미치는 쇼트피닝(Shot Peening)의 효과에 관한 연구 (The Effect of Shot Peening on the Bending Strength of Carburized Spur Gear Teeth Based on Fracture Mechanics)

  • S.K.Lyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.512-521
    • /
    • 1997
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a car¬burized gear tooth and its application to the fatigue crack propagation problem. The residual stress is estimated based on the assumption that the main cause of residual stress is the volume difference between the case and core due to martensitic transformation in cooling, and the influ¬ence of both the reduction of retained austenite and the strain in the surface layer induced by shot peening are considered. The reliability of the method is examined by comparison with stresses measured by the X-ray diffraction method. The stresses intensity factors are computed by the influence function method and the reduction of the factor due to the residual stress is demonstrat¬ed and discussed based on the fracture mechanics.

  • PDF

침탄치차의 쇼트피닝처리가 크랙진전억제에 미치는 영향 (Effects of Shot Peening on Crack Growth Resistance in Carburized Gears)

  • 류성기;정인성
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3227-3235
    • /
    • 1994
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a carburized gear tooth and its application to the fatigue crack propagation problem. A practical method is proposed on the basis of the assumption that the residual stress is caused by the difference of volume expansion in the case and the core, and the influence of both the reduction of retained austenite and the strain due to shot peening are considered. The evaluated residual stress is close to the measured stress, though the surface stress is rather overestimated. The stress intensity factor is computed by the influence function method, and it is shown that the factor is decreased by the residual stress in shot peened gear tooth. The shot peening is fairly effective to the reduction of fatigue crack growth rate. The crack propagation is simulated and the resistance due to shot peening is quantitatively demonstrated and discussed.

RADICAL IGNITION TECHNIQUE IN A CONSTANT VOLUME CHAMBER

  • Park, J.S.;Ha, J.Y.;Yeom, J.K.;Lee, J.S.;Lee, C.J.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.269-274
    • /
    • 2007
  • A prior fundamental study was executed using a constant volume chamber (CVC) to improve the burning characteristics of lean pre-mixture by the injection of active radicals generated in the sub-chamber of the CVC. The Radical ignition (RI) technique shows remarkable progress in the burning velocity and combustible lean limit compared with the results of the spark ignition (SI) technique. The optimum design value of the sub-chamber geometry is near $0.11cm^{-1}$ for the ratio of the total area of the holes to the sub-chamber volume $(A_h/V_s)$. In this study, based on the former experimental results, the additional works have been performed to examine the effects of the geometry change in the number $(N_h)$, the total section area $(A_h)$, and diameter $(D_h)$ of the passage holes on the combustion characteristics in the CVC. Also ambient conditions such as the initial temperature and the initial pressure of the mixture were selected as experimental parameters and the effects of residual gas at the chamber on the combustion characteristics were investigated. As a result, the correlation between the passage hole number and overall passage hole area was grasped. The effects of the initial temperature were significant, but on the other hand, those of the initial pressure were weak. A more detailed analysis on the residual gas is required in the future.

가압 급냉하에서의 사출 성형품내의 잔류 응력 형성 해석 (Residual stress formation in injection-molded samples under constrained quenching)

  • 윤경환
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.58-68
    • /
    • 1997
  • The residual stresses in injection-molded plastic parts can be divided into two, i.e., the flow-induced residual stress produced in flowing stage and the thermally-induced residual stress produced in cooling stage. Especially, the main source for the defect in the final parts, such as warpage, is known to be the thermally-induced stresses. For the freely quenched samples the structures of residual stresses and bire-fringence have been investigated by many researchers extensively. However, the boundary condition for free quenching was found to be improper to study actual injection molding process. In the present study a datailed structure of the residual stresses and birefringence produced under constrained quenching has been investigated experimentally. In constrained quenched samples a similar pattern but much less stress values than that for the freely quenched samples has been found in the case of the thickness of 1.0 mm. Howvere, in the case of the thickness of 4.0mm, totally different stress profile has been found experimentally. Suprisingly uniform birefringence throughout whole thickness has been found for all the cases of constrained quenching. Finally, to explain the mechanism to produce the final residual stresses and bire-fringence some preliminary numerical results including free volume theory have been introduced briefly.

  • PDF

고주파 Mn-Zn ferrites 전력손실에 대한 고찰 (Study on the Power Loss of High Frequency Mn-Zn ferrites)

  • 서정주
    • 자원리싸이클링
    • /
    • 제11권5호
    • /
    • pp.34-38
    • /
    • 2002
  • 최근 전자기기의 경박단소화로 페라이트 코아의 사용주파수가 고주파화 되고 있다. Mn-Zn ferrites에서 전력손실은 hysteresis loss, eddy current loss, residual loss로 구성되어 있으며, 500 KHz 이상의 주파수 영역에서는 residual loss가 주도적인 손실을 나타낸다. Induction level이 50 mT 이하인 경우 전력손실은 주파수의 3승 이상에 비례하여 증가한다. 작은 grain과 치밀한 미세구조는 고주파 대역에서 eddy current loss를 감소시킬 뿐만 아니라 자속밀도를 증가시켜 Residual loss역시 억제한다. Resonance frequency와 static permeability를 곱한 값이 큰 시편일수록 고주파 영역에서 낮은 전력손실을 보인다.

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제2권4호
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

상변태에 의한 잔류응력 완화효과에 관한 실험적 연구 (An Experimental Study on The Effect of Residual Stress Relaxation due to Phase Transformation)

  • 장경호;이진형;김재환
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 추계학술발표대회 개요집
    • /
    • pp.216-218
    • /
    • 2003
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. And it is well known that volume expansion due to phase transformation could influence in the case of welding of high tensile strength steels on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. In this study, we investigated the effect of phase transformation on the relaxation of welding residual stress through experiment. And three-dimensional thermal elastic-plastic FEM analysis is conducted to compare the effect of phase transformation on the relaxation of welding residual stress in high strength steels(POSTEN60, POSTEN80) with analytical results which is not considering the effect of phase transformation on residual stress relaxation. According to the results, the extents of welding residual stress relaxation due to phase transformation in the case of welding of POSTEN60, POSTEN80 are 0.85 $\sigma$/$\sigma$$\sub$Y0/, 0.75$\sigma$/$\sigma$$\sub$Y0/, respectively.

  • PDF

잔류응력 완화에 미치는 상변태의 수치적 모델링 (N.M.for the Effect of P.T. on Resicual Stress Relaxation)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • 제17권6호
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF

남은 음식물 퇴비 시용에 따른 토양의 이화학성 변화와 고추생육에 미치는 영향 (Effect of the Application of Residual Food Compost on Growth of Red Pepper(Capsicum annuum L.) and Physicochemical Properties of soil)

  • 유영석;장기운;이지환
    • 유기물자원화
    • /
    • 제9권4호
    • /
    • pp.81-88
    • /
    • 2001
  • 본 연구는 유기성 폐자원의 효율적인 처리 방법의 일환인 퇴비화를 이용하여 생산된 남은 음식물 퇴비(이하 음식물 퇴비)를 고추 재배지에 시용량 별로 처리한 후 작물 생육과 토양의 이화학성 변화에 미치는 영항을 평가하기 위해 수행되었다. 처리구는 무처리구, 대조구($20Mgha^{-1}$의 돈분 퇴비), 음식물퇴비를 20, 40, 60, $80Mgha^{-1}$을 시용한 처리구 등 모두 6 개를 두었으며 3 반복, 난괴법을 이용하였다. 토양 pH는 음식물 퇴비의 시용량이 많을수록 상승하는 경향이 컸으며, 전기 전도도를 비롯한 다른 토양 특성도 비슷한 경향을 보였다. 또한 음식물 퇴비 시용량이 많을수록 용적비중은 낮아지고 공극율은 증가하는 상관관계를 보였다. 작물생육은 퇴비 시용량이 많은 처리구에서 초기 생육이 저조하였으며 1차 생육조사에서 그 차이를 뚜렷하게 확인할 수 있었다. 고추의 생중량은 초기 생육에서 저해를 받은 처리구에서 특히 적었으며 음식물 퇴비의 $20Mgha^{-1}$처리구는 대조구에 비해 낮았지만 큰 차이는 크지 않았다. 음식물 퇴비의 수용성 유기성분과 염류에 의한 초기 생육부진과 고추 수확량 감소를 감안한다면 시용량은 $30Mgha^{-1}$을 초과하지 말아야 할 것으로 판단된다. 음식물 퇴비를 연용 시험을 통해 작물 생육과 토양에 미치는 영향을 평가하여 음식물 퇴비의 시용량을 설정하는 것이 바람직할 것으로 생각된다.

  • PDF

형상기억효과에 따른 3차원 잔류응력의 해석 (Analysis of 3-D residual Stresses Due to Shape Memory Effects)

  • 김홍건
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.42-46
    • /
    • 1999
  • The strengthening of a metal matrix composite(MMC) by the shape memory effect(SME) of dispersed TiNi particles was theoretically studied. An analytical model was constructed for the prediction of the average residual stress(<$\delta$>m) on the base of the Eshelby's equivalent inclusion method. The analysis was performed on the TiNi particle/Al metal matrix composites with varying volume fractions and prestrains of the particle. The residual stress caused by the shape memory of predeformed fillers has been predicted to contribute significantly to the strengthening of this composite.

  • PDF