• Title/Summary/Keyword: Residual tensile strength

Search Result 266, Processing Time 0.023 seconds

Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup (강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Ultra-high performance fiber-reinforced concrete (UHPFRC) is characterized by a post-cracking residual tensile strength with a large tensile strain as well as a high compressive strength. To determine a material tensile strength of UHPFRC, three-point loading test on notched prism and direct tensile test on doubly notched plate were compared and then the design tensile strength is decided. Shear tests on nine I-shaped beams with varied types of fiber volume ratio, shear span ratio and size effect were conducted to investigate shear behavior in web. From the test results, the stress redistribution ability represented as diagonal cracked zone was quantified by inclination of principal stress in web. The test results shows that the specimens were capable of resistance to shear loading without stirrup in a range of large deformation and the strength increase with post-cracking behavior is stable. However at the ultimate state all test specimens failed as a crack localization in the damaged zone and the shear strength of specimens is affected by shear span ratio and effective depth. Strength predictions show that the existing recommendations should be modified considering shear span ratio and effective depth as design parameters.

Evaluation on Thermal Shock Damage of Smart Composite using Nondestructive Technique (비파괴 기법을 이용한 스마트 복합재료의 열충격손상평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Lee, Kyu-Chang;Lee, Joon-Hyun
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • Tensile residual stress is occurred by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite with occurring of compressive residual stress in the matrix by its shape memory effect. A hot press method was used to create the optimal fabrication condition for a Shape Memory Alloy(SMA) composite. The bonding effect of the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at low temperature. The damage degree for the specimen that underwent thermal shock cycles was also discussed.

A Study on the Characteristics of Residual Stress in the Manufacturing Process of AISI 1536V and AISI A387 (제조공정에 따른 강종별 잔류응력 특성에 관한 연구; AISI 1536V, AISI A387)

  • Hwang, Sung-Kug;Moon, Jeong-Su;Kim, Han Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.100-106
    • /
    • 2020
  • This study analyzes the residual stress of AISI 1536V for an engine shaft of the shipbuilding industry and AISI A387 for a reactor shell of the chemical refining industry by the hole drilling method with a strain gauge rosette, which transforms fine mechanical changes into electrical signals. Tensile residual stress is generated in the forging and heat treatment process because specimens are affected by thermal stress and metal transformation stress. In the heat treatment process, the residual stress of AISI A387 is almost 170% the yield strength at 402 MPa. Since during the machining process, variable physical loads are applied to the material, compressive residual stress is generated. Under the same condition, the mechanical properties greatly affect the residual stress during the machining process. After the stress-relieving heat treatment process, the residual stress of AISI A387 is reduced below the yield strength at 182 MPa. Therefore, it is necessary to control the temperature, avoid rapid heat change, and select machining conditions depending on the mechanical properties of materials during manufacturing processes. In addition, to sufficiently reduce the residual stress, it is necessary to study the optimum condition of the stress-relieving heat treatment process for each material.

Thermal residual stress behavior in fiber metal laminates (섬유금속적층판의 경화 시 발생하는 열 잔류응력에 관한 연구)

  • Kim, Se-Young;Choi, Won-Jong;Park, Sang-Yoon;Moon, Cho-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.39-44
    • /
    • 2005
  • Due to mismatch of thermal expansion coefficients between aluminum sheet and glass/epoxy sheet, thermal residual stresses generally appear in the FML. These stresses will affect the yield and fatigue strength of the FML. The numerically determined residual stresses in the Fiber-Metal-Laminates(FML) have been compared to the residual stresses measured from the curvature and tensile test methods. These two experimental methods have been developed for assessing the influence of residual stress in FML. Post-stretching process has been applied to remove the thermal residual stress and reverse the stress distribution. After post-stretching process, the residual stress has been measured from experiments. The results obtained show that analytical and experimental data are well agreed. The thermal residual stress can be removed by post-stretching process and it will increase the yield strength of FML.

Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume

  • Ahmad, Subhan;Umar, Arshad;Masood, Amjad;Nayeem, Mohammad
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • This paper evaluates the workability and hardened properties of self-compacting concrete (SCC) containing silica fume as the partial replacement of cement. SCC mixtures with 0, 2, 4, 6, 8 and 10% silica fume were tested for fresh and hardened properties. Slump flow with $T_{500}$ time, L-box and V-funnel tests were performed for evaluating the workability properties of SCC mixtures. Compressive strength, splitting tensile strength and modulus of rupture were performed on hardened SCC mixtures. Experiments revealed that replacement of cement by silica fume equal to and more than 4% reduced the slump flow diameter and increased the $T_{500}$ and V-funnel time linearly. Compressive strength, splitting tensile strength and modulus of rupture increased with increasing the replacement level of cement by silica fume and were found to be maximum for SCC mixture with 10% silica fume. Further, residual hardened properties of SCC mixture yielding maximum strengths (i.e., SCC with 10% silica fume) were determined experimentally after heating the concrete samples up to 200, 400, 600 and $800^{\circ}C$. Reductions in hardened properties up to $200^{\circ}C$ were found to be very close to normal vibrated concrete (NVC). For 400 and $600^{\circ}C$ reductions in hardened properties of SCC were found to be more than NVC of the same strength. Explosive spalling occurred in concrete specimens before reaching $800^{\circ}C$.

Recycled Concrete Aggregates: A Review

  • McNeil, Katrina;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • This paper discusses the properties of RCA, the effects of RCA use on concrete material properties, and the large scale impact of RCA on structural members. The review study yielded the following findings in regards to concrete material properties: (1) replacing NA in concrete with RCA decreases the compressive strength, but yields comparable splitting tensile strength; (2) the modulus of rupture for RCA concrete was slightly less than that of conventional concrete, likely due to the weakened the interfacial transition zone from residual mortar; and (3) the modulus of elasticity is also lower than expected, caused by the more ductile aggregate. As far as the structural performance is concerned, beams with RCA did experience greater midspan deflections under a service load and smaller cracking moments. However, structural beams did not seem to be as affected by RCA content as materials tests. Most of all, the ultimate moment was moderately affected by RCA content. All in all, it is confirmed that the use of RCA is likely a viable option for structural use.

Deinking of Laser-printed Paper Using Enzyme (효소를 이용한 레이저 인쇄된 고지의 탈묵)

  • 안병준;백기현
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.2
    • /
    • pp.16-24
    • /
    • 1997
  • This experiment was mainly performed with a biological treatment of laser printed paper using enzyme, We got the following conclusions : In the case of nonionic surfactant treatment, brightness, residual ink contents and several strength properties of deinked paper were excellent at the low dosage of cellulase 0.05%. When mixed cellulase and xylanase was used, yield was increased as the dosage increased up to 0.2%, but brightness was decreased at the same condition. In contrast, deinking efficiency of anionic type was reduced in terms of brightness, residual ink contents, and tensile strength. As flotation time was increased, yield decreased and brightness increased slightly. On the other hand, the addition of surfactant during repulping process showed better result than that during flotation process.

  • PDF

The effect of PWHT on the mechanical properties of HSB600 steel (HSB600강의 용접 후 열처리에 따른 기계적 특성 변화 연구)

  • Lim, Young-Min;Ju, Dong-Hwi;Kim, Nam-Hoon;Koh, Jin-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.679-682
    • /
    • 2011
  • The effects of heat input(1.5~3.6kJ/mm) and postweld heat treatment(PWHT, $600^{\circ}C$, 40hr.) on the TMCP HSB600 steel weldments made by GMAW process were investigated. The tensile strength and CVN impact energy of as-welded specimens decreased with increasing heat input. The fine-grained acicular ferrite was mainly formed in the low heat input while polygonal and side plate ferrites were dominated in the high inputs. Meanwhile, tensile strength and hardness of PWHT weldments decreased due to the coarsening of microstructure and reduction of residual stresses.

  • PDF

Ni-Co Alloy Electroforming for Micro Mold Fabrication (마이크로 금형 제작을 위한 니켈-코발트 합금 전주기술개발)

  • Shin S. H.;Jeong M. K.;Kim Y. S.;Han S. H.;Hur Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.276-279
    • /
    • 2004
  • The factors affecting Ni-Co alloy electroforming were investigated to determine the optimum bath composition and electroplating parameters, like pH, temperature, and current density, suitable for high speed fabrication of a micro mold with longer lifetime. To obtain alloy deposits having uniform thickness and composition, electroplating parameters were finely tuned with home-made electroforming apparatus. Ni-Co alloy deposits had linearly increased Co with $Co^{2+}$ ion concentration in electroplating bath, and showing $412H_v$ of Victors hardness at $23wt\%$ of Co content. For Ni-Co alloy, sulfonate and diol related organic additives were very effective to alleviate its residual stress and surface roughness. The maximum deposition rate was $106{\mu}m/hr$ at 10ASD and the tensile strength of alloy deposit was 2 times larger than that of Ni only case.

  • PDF

Experimental Study on the Fatigue Behavior of Welded Joints (용접 이음 형상별 피로거동에 관한 실험적 연구)

  • Goo, B.C.;Kim, J.H.;Oh, C.L.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.359-364
    • /
    • 2004
  • We investigated the effect of weld details on fatigue behavior of a material, JIS SM 490 A, with yielding strength of about 350 MPa and tensile strength of about 520 MPa. Tensile tests, instrumented indentation tests and fatigue tests were carried out on double V-grooved butt weld plates such as reinforcement removed, as-welded and weld toe ground. In addition plates with transverse fillet welded web, load carrying cruciform fillet welded plates, non-load-carrying cruciform fillet welded plates and longitudinal butt welded plates were tested. S-N curves for the above specimens were obtained and analyzed

  • PDF